
Making the move to automation testing with Appium

1 www.kobiton.com www.kobiton.com

Making the move to automation testing with Appium

2 www.kobiton.com www.kobiton.com

Making the move to
automation testing with

Appium

A COMPREHENSIVE INTRODUCTION TO MOBILE TEST AUTOMATION

Kobiton, Inc.
Atlanta, GA

Making the move to automation testing with Appium

3 www.kobiton.com www.kobiton.com

Copyright © 2019 Kobiton, inc.

All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means, including photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher, except in the case of brief quotations embodied
in critical reviews and certain other noncommercial uses permitted by copyright law. For permission
requests, email the publisher, addressed “Attention: Permissions Coordinator,” at the address below.

www.kobiton.com
marketing@kobiton.com

Ordering Information:
Printed copies or Quantity sales. Printed versions of this book are available. Contact us for details
Special discounts are available on quantity purchases by corporations, associations, and others. For
details, contact the us at the address above.

Making the Move to Automation Testing with Appium — 1st ed.
ISBN Pending
Technical/Testing

Making the move to automation testing with Appium

4 www.kobiton.com www.kobiton.com

Table of Contents
Forward 8

Introduction 11

Chapter-1: Setting Up Your Testing Environment 13
Installation on Windows 13

Install the JDK software and set JAVA_HOME 13
Install Android Studio and set ANDROID_HOME 15
Installation of Node.js 15
Installation of Appium desktop server 16

Installation on Mac 17
Install the JDK software 17
Install Android Studio & Android SDK 18
Set JAVA_HOME & ANDROID_HOME 18
Installation of Node.js 19
Installation of the Appium desktop server 19
XCode with Appium libraries setup 20
WebDriverAgentRunner setup(Setting up iOS real devices tests with
XCUITest) 21

Automatic configuration 21
Manual configuration 23

Installation on Ubuntu(Linux) 27
Install JAVA(JDK/JRE) & set JAVA_HOME 28
Install Node.js without using sudo 28
Install Android Studio 29
Install Appium globally: 29
Install appium-doctor to troubleshoot the errors if any using 30

Chapter-2: Writing Your First Test Case 31
Setup the IDE (IntelliJ IDEA) 32

Installation of IntelliJ IDEA 32
Install the TestNG plugin on IntelliJ IDEA 34

Create your first automation test case 36
Create new project 36
Setup the automation case 40

Android 43
iOS 48

Chapter-3: Understanding the Desired Capabilities 54

Making the move to automation testing with Appium

5 www.kobiton.com www.kobiton.com

Desired capabilities for iOS and Android 56
Mobile web - Android 56
Mobile web - iOS 57
Mobile native - Android 57
Mobile native - iOS 57

List of all capabilities 58
General capabilities 58
Android capabilities 61
iOS capabilities 68

Important capabilities 72
Reset strategies 72
Android-specific capabilities 73
iOS-specific capabilities 74

Chapter-4: Appium Locator Finding Strategies 76
Accessibility ID 77
Class Name 79
ID 81
Name 83
XPath 84
Image 86
Android UiAutomator (UiAutomator2 only) 86
Android View Tag (Espresso only) 86
IOS UIAutomation 87

Chapter-5: The Appium Inspector 88
Different element inspector tools that helps you to identify elements in mobile
app 89
Element extraction on mobile native applications using Appium Inspector 90
Comparison between iOS & Android locator strategy 100

Android 100
iOS 101

Element extraction on a mobile web browser 101
ID 102
Name 103
Class Name 103
CSS Selector 104
XPath 105
LinkText and Partial LinkText 106

Mobile browser automation - Sample test case 106

Making the move to automation testing with Appium

6 www.kobiton.com www.kobiton.com

Android 107
iOS 108

Chapter-6: Walkthrough of UIAutomator for Android and Accessibility Inspector
for iOS for Element Extraction. 111

1. UiAutomatorViewer: 111
2. Accessibility Inspector: 115

Chapter-7: Developing a Test Automation Framework for Appium using Page
Object Modeling(POM). 120

Page Object Modeling(POM) 121
Fixing the locator when the application changes 147

Open the particular page object class 147
Get the new locator 148
Change the locator 148

Chapter-8: Test Synchronization 150
1) Unconditional synchronization 150
2) Conditional synchronization 151

Implicit wait 151
Explicit wait 153
Fluent wait 155

Synchronization in our automation framework (WaitUtils.java) 156

Chapter-9: Parallel Test Execution on Simulators and Emulators. 160
TestNG 160

Creation of testng.xml 163
Manually create testng.xml 163
Manually create testng.xml 165

How to run the testng.xml? 169
1) Parallel execution of tests on iOS simulators 170
2) Parallel execution of tests on real iOS devices 174
3) Parallel execution of tests on Android emulators 176
4) Parallel execution of tests on real Android devices 177

Chapter-10: Test Execution on Real Devices Using Kobiton 180
Introduction to Kobiton 180

Rich test logs for true Root Cause Analysis 181
Integration with your favorite tools 181
Powerful APIs 181
Manual, Automated and Parallel testing supported 181

Step-by-step guide 182

Making the move to automation testing with Appium

7 www.kobiton.com www.kobiton.com

Execute test cases on a Mobile Browser 192

Chapter-11: Automating Gestures 195
Tap on element 198
Tap on x, y coordinates 199
Press an element for a particular duration 199
Press x, y coordinates for a particular duration 200

Automating swipe actions 200
Horizontal swipe: Using start and end percentage of 202
the screen height and width 202
Vertical swipe(scroll): Using start and end percentage of the screen height and
width 204
Drag(swipe) one element to an another element 206
MultiTouch 207

Chapter-12: Appium Tips and Tricks 209
1) How to check whether an Android app is already installed or not? 209
2) How to enable mouse pointer location on Android at runtime ? 210
3) How to capture Screenshots On Test Failure? 211
4) How to dismiss dialogs/alerts automatically ? 212
5) How to handle notifications in Android? 212
6) How to make test cases fail fast in order to quickly get an error message? 213
7) How to handle the hide_keyboard() method? 214
8) How can you write test cases faster? 214
10) How to handle to mobile data, wifi and airplane mode in Android? 215
11) How to switch context? 215
12) How can you minimize and reopen the app again? 216
13) How to start Appium Server programmatically? 216

Chapter-13: Image Comparison Using Appium 220
Setup and Linking OpenCV with Appium 221

Install Appium CLI 221
Install the OpenCV library 222
Link the OpenCV library with Appium 223

Using the Image comparison feature in automation 224
Image Comparison Automation Test Case 225

Using Image Comparison to Locate an Element 228
Get the image file of the button 229
Get the element using the image 230
Click on the element 230

Making the move to automation testing with Appium

8 www.kobiton.com www.kobiton.com

Image matching: Find occurance of partial image in the full image 231

Chapter-14: End-to-End Testing 234
Setting up Appium 234
Test Planning 234
Test Environment Setup 235
Test Case Writing 236

Set desired capabilities 239
Getting the unique locators 239
Create action methods in PO classes 245
Create the test case and use action methods from PO classes 246

Chapter-15: Test Automation Design Patterns You Should Know 250
1) Page Object Model(Pattern) 250
2) Factory Design Pattern 252
3) Facade Pattern 253
4) Singleton Pattern 256
5) Fluent Page Object Model Pattern 260

Chapter 16 - Industry Viewpoints 262
Pratik Patel 263
Paul Grizzaffi 264
Mush Honda 265

Making the move to automation testing with Appium

9 www.kobiton.com www.kobiton.com

Forward

In recent years the prevalence of mobile testing has increased
dramatically, just like we expected it would from observations of
the mobile ecosystem. Mobile test automation is still a young art,
and there are many pitfalls in pursuit of useful and reliable
automation systems.

There is therefore a huge need at the present time for
comprehensive instruction, especially for those who are
transitioning to mobile testing from web or desktop testing.

While there are an overwhelming number of similarities between
these practices, the world of mobile testing comes with its own
prerequisites for understanding, and these are often ignored by
newcomers.

This book is a welcome addition to the expanding set of resources
available to the new mobile tester.

-- Jonathan Lipps, Founding Principal, Cloudgrey.io

About: Jonathan Lipps has been making things out of code as long as he can
remember. Jonathan is an Appium lead maintainer and architect and founding
principal of Cloud Grey, the mobile automation consultancy. Before founding Cloud
Grey, he was Director of Open Source at Sauce Labs. He has worked as a
programmer in tech startups for over a decade, but is also passionate about
academic discussion in various fields. Jonathan has master's degrees in philosophy
and linguistics, from Stanford and Oxford respectively. Jonathan lives in Vancouver,
Canada.

Making the move to automation testing with Appium

10 www.kobiton.com www.kobiton.com

Welcome

Mobile test automation is more important than ever. Companies
have embraced a "mobile-first" philosophy, and customers are
more demanding than ever. Delivering perfect mobile
experiences is no longer optional. It's imperative.

This makes it an exciting time to be a mobile test automation
engineer. They’re in high-demand and often working on high-
visibility projects.

Appium is by far the most used and widely adopted test
automation framework for mobile. And for good reason. Its
maturity and open-sourced approach has led to a large community
of Appium users who continue to improve the product.

It is our hope that this book will serve as a comprehensive guide,
taking you from Appium Newbie to Appium Expert.

As with any undertaking as large as writing this guide, we
anticipate errors slipping through the editing process, or
inaccuracies based on ever-changing technology. If you spot
something that doesn’t seem right, please email us at
marketing@kobiton.com. We welcome all comments!

Enjoy your journey!

Making the move to automation testing with Appium

11 www.kobiton.com www.kobiton.com

Introduction

Congratulations on taking the first step to automated mobile testing with Appium.
We’re excited to have you with us on this journey.

With most organizations adopting a ‘mobile-first’ policy and the increasing criticality
that mobile devices play in our everyday lives, the importance of rigourous mobile
testing is as important than ever.

And with the increasing pressure to release more, faster and with better quality,
companies need to integrate automated testing into their Quality Assurance process.
A task often made more difficult thanks to the fragmented mobile ecosystem
requiring development and testing across many different device and operating
system combinations.

There are plenty of testing tools out there to test app functionality (Especially User
Interface testing) of these hybrid, mobile web, and native mobile applications.

So why Appium?

Ideally, to answer that question we need to understand that there are certain
characteristics that must be present in an Automation tool, including:

● We should not have to change the app to apply automation testing
● It should not be language and platform specific.
● It should be open-source so it can have a large community and better

updates.
● We should be able to automate both Hybrid and Native apps.

Appium checks all these boxes, and that’s why it’s considered to be the leading
mobile test automation tool.
Appium is wrapper built upon Selenium WebDriver that translates Selenium
commands into iOS and Android specific commands, making the Selenium
WebDriver compatible with mobile. Selenium supports Java, Python C#, Ruby,
JavaScript, PHP.

Appium is using vendor-specific frameworks which are:

Making the move to automation testing with Appium

12 www.kobiton.com www.kobiton.com

● iOS 9.3 and above: Apple's XCUITest
● iOS 9.3 and lower: Apple's UIAutomation
● Android 4.2+: Google's UiAutomator/UiAutomator2
● Android 2.3+: Google's Instrumentation. (Instrumentation support is

provided by bundling a separate project, Selendroid)
● Windows: Microsoft's WinAppDriver

In the coming chapters we’ll be doing a deep-dive into Appium. By the time you work
through this book, you will be a very accomplished and capable Appium test
engineer. The first place to start your journey is setting up your environment. So
grab a cup of coffee and let’s get started.

Making the move to automation testing with Appium

13 www.kobiton.com www.kobiton.com

Chapter-1: Setting Up Your
Testing Environment

Appium is platform independent so executing Appium scripts is largely consistent
across all the major platforms (Linux, Mac, and Windows). In this section, we will
discuss how can you setup Appium and it’s dependencies on different platforms.
Refer to the section relevant to your environment.

Installation on Windows

Software required:

1. Java
2. Android SDK (Android Studio)
3. Node.js
4. Appium Desktop Server

1) Install the JDK software and set JAVA_HOME
1. Install the Java Development Kit Software.

▪ Go to: http://java.sun.com/javase/downloads/index.jsp

▪ Select the appropriate JDK software and click Download.

▪ The JDK software is installed on your computer, for example,
at C:\Program Files\Java\jdk1.6.0_02. You can
move the JDK software to another location if desired.

2. Set JAVA_HOME:
▪ Right click My Computer and select Properties.

▪ On the Advanced tab, select Environment Variables, and then

edit JAVA_HOME to point to where the JDK software is located,
like: C:\Program Files\Java\jdk1.6.0_02.

▪ You can check it by typing $ java -version command at

the command prompt

Making the move to automation testing with Appium

14 www.kobiton.com www.kobiton.com

Figure-1: JAVA_HOME System Variable.

Figure-2: PATH System Variable.

Making the move to automation testing with Appium

15 www.kobiton.com www.kobiton.com

2) Install Android Studio and set ANDROID_HOME

1. Install Android Studio and the SDK:

▪ Go to: https://developer.android.com/studio/index.html

▪ Download and Install Android Studio

▪ Open Android Studio and then download the needed Android
SDK files from Tools > Android > SDK Manager

2. Set ANDROID_HOME:

▪ Right click My Computer and select Properties.

▪ On the Advanced tab, select Environment Variables, and then
add ANDROID_HOME to point to where the Android SDK files is
located, like: D:\Android\sdk\

▪ Verify it on the Command prompt using $ echo

%ANDROID_HOME% command. Output must display the SDK
path.

Figure-3: ANDROID_HOME System Variable.

3) Installation of Node.js

1. Install Node.js from: https://nodejs.org/en/download/

Making the move to automation testing with Appium

16 www.kobiton.com www.kobiton.com

2. You can verify installation by entering $ npm -v command at the
command prompt and it will display the version.

Figure-4: Node.js version

4) Installation of Appium desktop server

1. Go to the Appium github project and Download the relevant Appium
Desktop .exe file.

2. Install it and Open Appium.exe file and start the server

Figure-5: Appium Desktop Application

Making the move to automation testing with Appium

17 www.kobiton.com www.kobiton.com

3. A Terminal should appear saying ‘The server is running’

Figure-6: Appium Server is running on 0.0.0.0:4723

Please follow the above steps correctly in order to have a seamless Appium
setup experience.

Installation on Mac

Software required:

1. Java
2. Android SDK (Android Studio)
3. Node.js
4. XCode
5. Appium Desktop Server

1) Install the JDK software
1. Install the Java Development Kit Software from:

http://java.sun.com/javase/downloads/index.jsp

2. Select the appropriate JDK software and click Download.

3. Set JAVA_HOME:
▪ Right click My Computer and select Properties.

▪ On the Advanced tab, select Environment Variables, and then

edit JAVA_HOME to point to where the JDK software is located,
like: C:\Program Files\Java\jdk1.6.0_02.

Making the move to automation testing with Appium

18 www.kobiton.com www.kobiton.com

2) Install Android Studio & Android SDK
1. Install Android Studio from:

https://developer.android.com/studio/index.html

2. Open Android Studio and then download the needed Android SDK
files from Tools > Android > SDK Manager

3) Set JAVA_HOME & ANDROID_HOME
1. We need to store Environment variables in .bash_profile file so

open Terminal and enter this command to open the bash_profile:

$ vi ~/.bash_profile

2. Now to you need to go into insert mode by pressing the `i` key from
the keyboard, and write the following text at the end of the file.

export ANDROID_HOME=/Users/username/Library/Android/sdk
export ANDROID_SDK=$ANDROID_HOME
PATH=$PATH:$ANDROID_HOME/build-tools
PATH=$PATH:$ANDROID_HOME/platform-tools
PATH=$PATH:$ANDROID_HOME/tools

export PATH
export
JAVA_HOME="`/System/Library/Frameworks/JavaVM.framework/Versi
ons/Current/Commands/java_home`"

3. Press ESC key followed by :wq which will save the .bash_profile
file.

4. You can check that JAVA_HOME & ANDROID_HOME are properly set
by executing commands $ java -version & $ echo
$ANDROID_HOME Respectively.

Making the move to automation testing with Appium

19 www.kobiton.com www.kobiton.com

Figure-7: ANDROID_HOME & JAVA_HOME environment variables.

4) Installation of Node.js
1. Install Node.js from: https://nodejs.org/en/download/

2. You can verify the installation by entering $ npm -v command at

the command prompt and it will display the version.

5) Installation of the Appium desktop server
1. Go to the Appium github page and download the relevant Appium

Desktop .dmg file.

2. Install it and Open Appium and start the server

3. A Terminal should appear saying ‘The server is running’

Making the move to automation testing with Appium

20 www.kobiton.com www.kobiton.com

Figure-8: Appium Desktop Application

Figure-9: Appium Server is running on 0.0.0.0:4723

6) XCode with Appium libraries setup
1. Install XCode: https://developer.apple.com/download/

2. Install Xcode Command line tools:

▪ Execute below command on Terminal:
$ xcode-select --install

Making the move to automation testing with Appium

21 www.kobiton.com www.kobiton.com

3. Install Brew(If it’s not installed already):

▪ Execute below command on Terminal:
 $ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/ins
tall/master/install)"

4. Install libimobiledevice:
▪ Execute below command on Terminal:

 $ brew install libimobiledevice --HEAD

5. Install ios-deploy:
▪ Execute below command on Terminal:

 $ npm install -g ios-deploy

6. Install carthage:
▪ Execute below command on Terminal:

 $ brew install carthage

 NOTE: Now you are set to run your iOS Appium Script on Simulator

7) WebDriverAgentRunner setup(Setting up iOS real devices tests
with XCUITest)

This is the most crucial and important step of Appium setup for iOS.
If you don’t follow these steps correctly then you might not be able to
run the Appium Automation scripts on your real iOS devices.

 There are 2 ways to configure project in Appium:

1) Basic (automatic) configuration
2) Basic (manual) configuration

1. Automatic configuration
The easiest way to get up-and-running with Appium's XCUITest support on
iOS real devices is to use the automatic configuration strategy. There are two
ways to do this:

1) Use the xcodeOrgId and xcodeSigningId desired capabilities:

{
 "xcodeOrgId": "<Team ID>",

Making the move to automation testing with Appium

22 www.kobiton.com www.kobiton.com

 "xcodeSigningId": "iPhone Developer"
}

In Java, the code will look like:

desiredCapabilities.setCapability("xcodeOrgId", <<Team ID>>);
desiredCapabilities.setCapability("xcodeSigningId", "iPhone
Developer");

NOTE: You will learn about desiredCapabilities in a subsequent chapter. You
can always come back to this section after you’ve progressed in your Appium
knowledge a bit further and need to start testing on real iOS devices (as
compared to Emulators).

or

2) Create a .xcconfig file somewhere on your file system and add the

following to it

DEVELOPMENT_TEAM = <Team ID>
CODE_SIGN_IDENTITY = iPhone Developer

After this you need to set the desired capabilities and set the path to
.xcconfig file:

desiredCapabilities.setCapability("xcodeConfigFile",
"path/to/.xcconfig")

In either case, the Team ID is a unique 10-character string generated by
Apple that is assigned to your team. You can find your Team ID using your
developer account. Sign in to www.developer.apple.com/account , and click
Membership in the sidebar. Your Team ID appears in the Membership
Information section under the team name. You can also find your team ID
listed under the "Organizational Unit" field in your iPhone Developer
certificate in your keychain.

NOTE: These are mutually exclusive strategies; use either the
xcodeConfigFile capability or the combination of xcodeOrgId and

Making the move to automation testing with Appium

23 www.kobiton.com www.kobiton.com

xcodeSigningId. For more details you can visit this link.

2. Manual configuration
There are many cases in which the basic automatic configuration is not
enough. This usually has to do with code signing and the configuration of the
project to be able to be run on the real device under test. Often this happens
when the development account being used is a "Free" one, in which case it is
not possible to create a wildcard provisioning profile, and will often not
create one for the default application bundle.

Please follow these steps to Manually configure the WebDriverAgent XCode
project.

● Move to the: WebDriverAgent.xcodeproj(Make sure you have
installed Appium Desktop application properly):

$ cd
/Applications/Appium.app/Contents/Resources/app/node_modules/
appium/node_modules/appium-xcuitest-driver/WebDriverAgent

● Execute the Scripts/bootstrap.sh script using:

$ sh Scripts/bootstrap.sh

● Open the WebDriverAgent.xcodeproj project in Xcode.

Figure-10: WebDriverAgent.xcodeproj Project in Finder window..

● Select WebDriverAgentRunner under TARGETS.

● Now when you move to WebDriverAgentRunner, you would face an
error that Xcode failed to create provisioning profile:

Making the move to automation testing with Appium

24 www.kobiton.com www.kobiton.com

Figure-11: XCode: WebDriverAgentRunner Project in not able to find Provisioning profile.

● The easiest way to resolve that is 1) Select WebDriverAgentLib under
TARGETS, 2) select Automatically manage signing, 3) select valid
Team and most important 4) change the Bundle Identifier and put
the Bundle Identifier of your existing valid XCode project the purpose
here to put something that Xcode will accept.

Making the move to automation testing with Appium

25 www.kobiton.com www.kobiton.com

Figure-12: XCode: Change Bundle Id, Select and Select Valid Team Project

● Also ensure that you should have installed the valid Provisioning

profile(Of course compatible with entered Certificate and Bundle
Identifier). Now move to WebDriverAgentRunner again and 1) Select
valid Provisioning Profile under Signing (Debug) and 2) Select valid
Provisioning Profile under Signing (Release).

Making the move to automation testing with Appium

26 www.kobiton.com www.kobiton.com

Figure-13: XCode: Select Valid Provisioning Profile for WebDriverAgentRunner

● Now to be on safer side repeat above step same for UnitTests,

IntegrationTests_1, IntegrationTests_2, IntegrationTests_3 and
IntegrationApp

● Connect valid iPhone device to your Mac machine(Please ensure

device is included in selected provisioning profile).

● Select WebDriverAgentRunner under TARGETS and click on Test
button to execute build on your connected device.

Figure-14: XCode: Test the Project on connected iPhone device

Making the move to automation testing with Appium

27 www.kobiton.com www.kobiton.com

● You can observe that when you click on Test/Run button the
WebDriverAgent application will be installed to iOS device and it will
open and give you the black screen for a moment and automatically
closed. That means Success. Now you can able to Run Appium script
on this device.(In fact it applies to all the valid devices registered
under selected provisioning profile).

NOTE: Please install Appium-Doctor(Node Utility) using npm, It will diagnose and fix
common Node, iOS and Android configuration issues before starting Appium.

$ npm install -g appium-doctor
//then
$ appium-doctor
//it will give checklist of which things are okay and
which are not

Figure-15: Appium Doctor Node Utility on iOS

Installation on Ubuntu(Linux)

Software required:

1. Java
2. Android SDK (Android Studio)
3. Node.js
4. Appium Desktop Server

Making the move to automation testing with Appium

28 www.kobiton.com www.kobiton.com

1) Install JAVA(JDK/JRE) & set JAVA_HOME
● Install Java Development Kit Software from:

$ sudo apt-get update
$ sudo apt-get install default-jre
$ sudo apt-get install default-jdk
//to install oracle jdk

$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-installer

● In order to set JAVA_HOME on linux you need to edit the .bashrc

and need to specify the path of java directory.

$ vi ~/.bashrc

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export PATH=${PATH}:${JAVA_HOME}/bin

● Run below command to verify that recently saved environment

variables are displaying correct path or not.

$ echo $JAVA_HOME
$ echo $PATH

NOTE: Use the command: $ which java to find out exact path to which java
executable

2) Install Node.js without using sudo
● Do not install node.js through apt-get, which will need sudo rights and

appium will not work if node.js is installed as sudo user.
If you have already installed remove it using commands:

$ sudo apt-get remove nodejs
$ sudo apt-get remove npm

● Download latest nodejs linux binaries from

https://nodejs.org/download/release/latest/ into a folder for
example /home/username/Downloads.

$ cd /usr/local tar --strip-components 1 -xzf

Making the move to automation testing with Appium

29 www.kobiton.com www.kobiton.com

/home/username/Downloads/node-v8.2.1-linux-x64.tar.gz

● For Verification use below commands:

$ which node //it should give you output like:
usr/local/bin/node
$ node -v //it should give you output v8.2.1 (or whichever
version you have installed)

3) Install Android Studio
● Download and install Android Studio from Official Google Website:

https://developer.android.com/studio/
● Open terminal and Enter:

$ cd android-studio/bin
$. studio.sh //To execute the studi.sh script

● Now android studio will open.Click next and let it download required

things.

● Once android sdk is installed add ANDROID_HOME to environment
variable using:

$ vi /.bashrc

export ANDROID_HOME=/home/user_name/Android/Sdk
export PATH=$PATH:/home/user_name/Android/Sdk/tools
export PATH=$PATH:/home/user_name/Android/Sdk/platform-tools

4) Install Appium globally:
● Open terminal and enter below commands in order to install the

appium globally.

$ npm install -g appium
$ appium //To start the Appium server

Making the move to automation testing with Appium

30 www.kobiton.com www.kobiton.com

5) Install appium-doctor to troubleshoot the errors if any using
● Please install Appium-Doctor(Node Utility) using npm, It will diagnose

and fix common Node, iOS and Android configuration issues before
starting Appium.

$ npm install -g appium-doctor
//then
$ appium-doctor
//it will give checklist of which things are okay & which
aren’t

Making the move to automation testing with Appium

31 www.kobiton.com www.kobiton.com

Chapter-2: Writing Your First
Test Case
And now the moment you’ve been waiting for: Writing your first test case. You’ll
quickly grasp the basics of Appium and see how it can be used for test automation.

We’re going to cover a lot of ground in this chapter but it will be well worth it. By the
end of this chapter you’ll have grasped the basics of Appium and writing test cases.

Appium supports Native, Hybrid and Web application testing, and you can execute
Appium scripts on Real Physical devices(iOS/Android), simulators(iOS) and
emulators(Android).

The best thing about Appium is it has no dependency on the Mobile OS or Mobile
Application, meaning you can Appium scripts can run everywhere. For Automation
Testing with Appium you will just need the APK or IPA file.

Under the hood, Appium is just wrapper that translates Selenium Webdriver
commands into XCUITest for iOS and UiAutomator2 for Android. XCUITest and
UiAutomator2 are Test frameworks for XCode and Android Studio respectively.

Appium supports all the programming languages which Selenium supports such as
Java, C#, Python, Ruby, Javascript with Node.js etc.

For the examples that follow, we will be using Java since Appium was written in Java,
and you can find many resources online on Appium and Java, which makes your
learning journey a little easier. In our examples we will be using a Mac, but of course
you will be fine on any supported operating system.

Please make sure you followed the previous chapter and installed Appium properly.
Now that Appium is installed, we’ll be installing our development environment. If
you already have a development environment installed, you can skim through the
steps that follow. However, it may be easier for you to follow these instructions and
have your environment mimic ours for easier reference.

Note: The steps may seem a little daunting especially when you want to write a
simple test case. However, this is really a one-time effort. Once your environment is
configured and you’re comfortable with concepts such as dependency management,
you’ll find writing the Appium scripts is a relatively straightforward task. So stay with
us through this section, and it will get easier, we promise.

Making the move to automation testing with Appium

32 www.kobiton.com www.kobiton.com

We will start by installing an IDE to create Java based Appium Scripts. You can either
select IntelliJ IDEA or Eclipse IDE (or any IDE of your choice). We will be using IntelliJ.

To summarize, we will use the following to create our Appium Script:

1. Programming Language: Java
2. Test Framework: TestNG
3. IDE: IntelliJ IDEA
4. Project Dependency Tool: Gradle

There are 2 primary things to accomplish in this chapter:

1) Setup the IDE (IntelliJ IDEA).
2) Create the First Automation Test Case. Note that Appium is used to drive or

control the underlying mobile application in order to perform automation on
it. However, you still need some testing framework for implementation of the
actual tests. We will be using the TestNG framework for this purpose.

Setup the IDE (IntelliJ IDEA)
In order to sethup the IDE you need to:

1) Install the intelliJ IDEA
2) Install the TestNG plugin on IntelliJ IDEA.

1) Installation of IntelliJ IDEA
1. You can download and install IntelliJ IDEA Community Edition from

here: https://www.jetbrains.com/idea/download/#section=mac

2. Install it by dragging and dropping:

Making the move to automation testing with Appium

33 www.kobiton.com www.kobiton.com

Figure-1: Installation of IntelliJ IDEA Community Edition.

3. If you are installing IntelliJ Idea first time, then you need to select the
“ Do not import settings” option.

Figure-2: Complete the Installation.

4. Accept the IntelliJ IDEA Privacy Policy Agreement:

Making the move to automation testing with Appium

34 www.kobiton.com www.kobiton.com

Figure-3: Policy Agreement.

5. Set your preferred theme and click on Next:

Figure-4: Set UI Theme.

6. Select the default plugins, and Finish the setup.

2) Install the TestNG plugin on IntelliJ IDEA
By default the TestNG plugin is installed in IntelliJ IDEA. You can check it in
several ways but the best way is to check it is in Plugins.

Making the move to automation testing with Appium

35 www.kobiton.com www.kobiton.com

1. Open IntelliJ Idea and click on Configure > Plugins.

Figure-5: Go to IntelliJ IDEA Plugins.

2. Type ‘testng’ and search it, if it is installed properly you can see the
Right tick icon right next to ‘TestNg’ text. And if it is not installed you
need to install by clicking on Install JetBrains plugin… > Search for
‘testng’ > Install it.

Making the move to automation testing with Appium

36 www.kobiton.com www.kobiton.com

Figure-6: Check IntelliJ Plugin.

Create your first automation test case

We need to create a new project and than need to setup the Automation script, so
we can divide this into 2 sections:

1) Create New Project.
2) Setup the Automation Case.

1) Create new project
1. Open IntelliJ IDEA and click on `Create New Project`

Figure-7: Create New Project.

2. Now we need to select the project configuration such as Project type,
Java version, and Build tool. We can either use Maven OR Gradle, but
since Gradle is more flexible we will be using that for our tutorial.

Making the move to automation testing with Appium

37 www.kobiton.com www.kobiton.com

However you can use Maven if you prefer (We just need to add few
dependencies).

Figure-8: Create New Project.

3. Give the proper GroupId and ArtifactId(Project Name) and Version.

Figure-9: Enter GropuId, ArtifactId and Version.

NOTE: For better project management it is better to give a proper Group Id and
Artifact Id.
Visit: http://maven.apache.org/guides/mini/guide-naming-conventions.html to
learn more about it.

Making the move to automation testing with Appium

38 www.kobiton.com www.kobiton.com

4. This is the Gradle selection dialog, If you haven’t installed Gradle
explicitly it is recommended to the Use default gradle wrapper
(recommended)

Figure-10: Select ‘Use default gradle wrapper (recommended)’

5. Confirm all the project details and Finish the setup.

Making the move to automation testing with Appium

39 www.kobiton.com www.kobiton.com

Figure-11: Confirm Project Details.

6. After the setup is finished, gradle will build the project and it may take
some time (especially for the first time, because it will download the
Gradle .zip file). After the sync up is done you can see the Project
Directory as per the below image.

Now we are ready to add Appium dependencies and then start coding
the first automation test case.

Figure-12: IntelliJ IDEA: Project - First Automation Test

Making the move to automation testing with Appium

40 www.kobiton.com www.kobiton.com

2) Setup the automation case
The first step of any project setup is to download and link the needed
libraries/files referred to as dependencies. Gradle and Maven are
dependency management tools and have a large number of remote
dependencies.

So let’s understand how Gradle works:

● Modern software projects rarely build code in isolation. Projects
reference modules for the purpose of reusing existing and proven
functionality.

● Selected versions of modules are downloaded from dedicated

repositories(from remote servers)

● And they are stored in the dependency cache to avoid unnecessary
network traffic.

Figure-13: Gradle Build System

Declaring a concrete version of a dependency:

● A typical example for such a library in a Java project is the Automation
testing library which is Selenium.

Making the move to automation testing with Appium

41 www.kobiton.com www.kobiton.com

● The following code snippet declares a compile-time dependency on
the Spring web module by its coordinates:

build.gradle:

sourceCompatibility = 1.8
repositories {
 mavenCentral()
}
dependencies {
 compile group: 'org.seleniumhq.selenium', name:
'selenium-java', version: '3.14.0'
}

● The above code snippet declares a compile-time dependency of

Selenium library(.JAR file), So when you build the project Gradle will
download the Selenium library having version 3.14.0 from
mavenCentral(remote registry) and store it in the Gradle cache, so
when you mention this same library with the same version next time
on a different project, Gradle will link the library from the Gradle
cache.

Here we need 2 dependencies:

1) Appium Java Client - Mobile Automation Appium Library.
2) TestNG - Test Framework.

Now continue to our project, open build.gradle file and add the following
dependencies to the build.gradle file.

dependencies {
testCompile group: 'io.appium', name: 'java-client', version:
'6.1.0'
testCompile group: 'org.testng', name: 'testng', version:
'6.14.3'
}

NOTE-1: As we already have the TestNG plugin installed, we don’t need to
mention the TestNG dependency but to be on the safer side and so that this
project can also be imported to other IDEs such as Eclipse, and to run through the
command line we need to have the dependency mentioned in build.gradle.

Making the move to automation testing with Appium

42 www.kobiton.com www.kobiton.com

NOTE-2: We will be adding the Automation script under src/test directory, so in
order to link the Appium and TestNG dependencies to that directory we need to
use the testCompile keyword instead of the compile keyword(which compiles the
dependencies and made them accessible to src/main directory).

After mentioning the dependencies in the build.gradle, the project will be
built and the mentioned dependencies will be downloaded, so now you can
use Appium and TestNG classes inside the test directory.

Figure-14: build.gradle

After dependency management we need to start working on our Appium
script. We will start by setting the correct set of Desired Capabilities.

What is “Desired capabilities”?

Desired Capabilities are core to Appium. They are actually a set of keys and
values sent to the Appium server to tell the server what kind of automation
session should be started. There are various capabilities to modify the
behavior of the server during automation.

We have a dedicated chapter on desired capabilities where we will explore
them in-depth, but for the sake of getting our first case test we’ll use the
following desired capabilities:

Android:

{
 "platformName": "Android",
 "platformVersion": "8.0",
 "app": "/Users/username/Downloads/sample.apk",
 "deviceName": "c4e3f3cda"

Making the move to automation testing with Appium

43 www.kobiton.com www.kobiton.com

}

iOS:

{
 "platformName": "iOS",
 "platformVersion": "11.4.1",
 "app": "/Users/username/Downloads/sample.ipa",
 "deviceName": "John’s iPhone",
 "udid": "bea36e2b0262ae4b77bd3463bd462922ee935d24"
}

Now let’s understand these capabilities:

1. platformName- Specifies the Mobile Device Platform to use. (iOS or
Android)

2. platformVersion- Mobile OS version (8.0, 11.4, 12.1)
3. app- The absolute path to the location of the app to test,

apk/ipa.(For this example it is under src/test/resource directory)
4. deviceName- Can either refer to an actual mobile device or to an

Emulator/Simulator. For Android you can find it using $ adb
devices command and for iOS you may use $ instruments -s
devices

5. udid- It is the Unique device identifier of the connected physical
device.

We will look at both an Android and iOS test case. However, please review both
sections even if you are not testing on a particular platform. For each, we explore
a different scenario and you will be exposed to different features. If you don’t
have the specific platform, just read along so that you can get the gist of what we
are doing.

Android

1. We will look at an Android test first. After setting the valid
DesiredCapabilities, we need to pass them to the AndroidDriver class
along with the Appium Server URL(By default it is:
http://127.0.0.1:4723/wd/hub)

Making the move to automation testing with Appium

44 www.kobiton.com www.kobiton.com

AndroidDriver is the main class we will be working with. We will
create an instance of AndroidDriver and we will interact with all the UI
Elements of the app using that object every time.

And as we are using the TestNG framework we will put these
initialization steps before the test starts, so our code will look like this:

Figure-15: AndroidDriver initialization and Desired Capabilities.

TestNG provides annotations such as @BeforeTest, @BeforeMethod,
@AfterTest, @AfterMethod, @Test etc.
In the above screenshot, @BeforeTest means that the method will be
called before the test, and only once. So it is standard practice to put
the AndroidDriver initialization code over there, so the object of
AppiumDriver becomes accessible at the end of that method and
before the test.

2. Now let’s create the first sample Appium Test Case.

The @Test annotation(provided by TestNG) is used to create the
individual test case. So in the below code firstTest is an individual test
case.

@Test
public void firstTest(){}

3. So let’s automate a simple scenario. In the below screen we want to

click(tap) on Login Screen item from list.

Making the move to automation testing with Appium

45 www.kobiton.com www.kobiton.com

Figure-16: Android - Sample App.

4. After creating the test case we need to add the Appium logic to

interact with the UI elements. In Appium we need each element’s
locator to interact with. If you want to tap on some button, you need
to find the locator of that button first and then after that you can
perform a click() action upon it. We will be exploring locators in
detail in a subsequent chapter.

This code will find the Login Screen textview locator and simply click
on it:

driver.findElement(By.id("Login Screen")).click();

Making the move to automation testing with Appium

46 www.kobiton.com www.kobiton.com

Now our First Appium Automation Script is ready to execute, below is
the complete code:

import io.appium.java_client.AppiumDriver;
import io.appium.java_client.android.AndroidDriver;
import org.openqa.selenium.By;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.testng.annotations.BeforeTest;
import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class AndroidSampleTest {

 public AndroidDriver driver;

 @BeforeTest
 public void setUp() throws MalformedURLException {
 String appiumServerURL =
"http://127.0.0.1:4723/wd/hub";

 DesiredCapabilities dc = new DesiredCapabilities();
 dc.setCapability("platformName", "Android");
 dc.setCapability("platformVersion", "8.0");
 dc.setCapability("app",
"/Users/test/Downloads/FirstAutomationTest/src/test/resource
s/DemoApp.apk");
 dc.setCapability("deviceName", "c4e3f3cd");
 dc.setCapability("automationName", "UiAutomator2");

 driver = new AndroidDriver(new URL(appiumServerURL),
dc);
 }

 @Test
 public void firstTest() throws InterruptedException {
 driver.findElement(By.id("Login Screen")).click();
 }

Making the move to automation testing with Appium

47 www.kobiton.com www.kobiton.com

}

5. We are ready to execute it on a real device, so follow these steps:

a. Move to the Appium Desktop Application and Start the Server.

Figure-17: Appium Server is Running on 0.0.0.0:4723

b. Connect your Android Mobile device to your computer and
check that it is connected properly by executing $ adb
devices command. And also check the deviceName
capability has the same name of the device which is showing
up in the terminal.

Figure-18: Android device is connected.

c. Please make sure that device screen is unlocked and that it’s

connected properly. Now move to intelliJ Idea and select the
test case name > Right click on it > Run ‘firstTest()’

Making the move to automation testing with Appium

48 www.kobiton.com www.kobiton.com

Figure-19: Run the test case.

d. Observe the Test Result and confirm the navigation on your

device. It was a simple test case but you’ve actually
accomplished a lot! From here, you get to explore all the cool
features that Appium offers.

Figure-20: Test Result.

Although we will be turning to iOS next, be sure to read this section even if you
are not doing iOS testing. In this example, we get just a little more sophisticated
with our test and also expose you to using an assert statement.

iOS

1. Let’s make our test case a little more sophisticated, while also looking
how we can work with iOS. Again, if if you are not planning on using
iOS, we suggest you read this section as we’ll be introducing new

Making the move to automation testing with Appium

49 www.kobiton.com www.kobiton.com

concepts applicable to both iOS and Android. For our iOS sample test
case we will create a separate Test Case file named iOSSampleTest

2. As we discussed above we need to put the iOS capabilities instead of

Android capabilities, and define an IOSDriver class instead of an
AndroidDriver class.

Figure-21:iOSDriver initialization and Desired Capabilities.

3. After specifying the desired capabilities we can write the Automation

test case.We have a sample app(.app file, which will work on iOS
Simulator only) for automation. In this app there is a feature where
you can add 2 integer numbers and can get the the results. So we will
automate this feature.

Making the move to automation testing with Appium

50 www.kobiton.com www.kobiton.com

Figure-22: iOS Sample Application

The steps to automate this would be:

a. Find the locator of TextField A and enter the value (ie. Send
keys) from the keyboard.

driver.findElement(By.id("IntegerA")).sendKeys(5 + "");

Making the move to automation testing with Appium

51 www.kobiton.com www.kobiton.com

NOTE: The sendKeys() method accepts only String parameter so we have
converted the Integer value to a String by appending a blank String value.

b. Find the locator of TextField B and enter the second value
from the keyboard.

driver.findElement(By.id("IntegerB")).sendKeys(10 + "");

c. Find the locator of ‘Compute Sum’ and click on it, so the result

would be displayed below the ‘Compute Sum’ textview.

driver.findElement(By.id("ComputeSumButton")).click();
String answer =
driver.findElement(By.id("Answer")).getText();

NOTE: The getText() method is used to get the Text(in String format) from UI
Elements.

d. Get the text of the result and compare it with the expected
result, so if you enter 5 into TextField A, 10 into TextField B
and when you click on ‘Compute Sum’ textview the result 15
should be displayed under ‘Compute Sum’.

Assert.assertEquals(answer, 15 + "", "Expected and Actual
Result didn't match!");

NOTE: Assert.assertEquals(expected, actual, error_message) is a
TestNG method used to compare the Expected and Actual values. This is the most
important step of any test case, because this is how automation test will know
whether values are being rendered on UI is correct and as expected or not. You will
see us using Assertions throughout this guide.

TestNG is the Testing framework and work best with Appium(Mobile Automation)
and Selenium(Website Automation), you can learn more about the TestNG
Annotations and methods here: https://testng.org/doc/index.html

4. Below is the full code of our test which will enter 2 values into text
fields, click on ‘Compute Result’, get the result from app and compare
it with the expected result.

Making the move to automation testing with Appium

52 www.kobiton.com www.kobiton.com

import io.appium.java_client.ios.IOSDriver;
import io.appium.java_client.ios.IOSElement;
import org.openqa.selenium.By;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.testng.Assert;
import org.testng.annotations.BeforeTest;
import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class iOSSampleTest {
 public IOSDriver<IOSElement> driver;

 @BeforeTest
 public void setUp() throws MalformedURLException {
 String appiumServerURL =
"http://127.0.0.1:4723/wd/hub";

 DesiredCapabilities dc = new
DesiredCapabilities();
 dc.setCapability("platformName", "iOS");
 dc.setCapability("platformVersion", "11.4");
 dc.setCapability("app",
"/Users/pratik/Downloads/FirstAutomationTest/src/test/reso
urces/DemoApp-iPhoneSimulator.app");
 dc.setCapability("deviceName", "iPhone X");

 driver = new IOSDriver<IOSElement>(new
URL(appiumServerURL), dc);
 }

 @Test
 public void secondTest() throws InterruptedException {
 int a = 5;
 int b = 10;

 driver.findElement(By.id("IntegerA")).sendKeys(a +
"");
 driver.findElement(By.id("IntegerB")).sendKeys(b +

Making the move to automation testing with Appium

53 www.kobiton.com www.kobiton.com

"");

driver.findElement(By.id("ComputeSumButton")).click();
 String answer =
driver.findElement(By.id("Answer")).getText();
 Assert.assertEquals(answer, a + b + "", "Expected
and Actual Result didn't match!");
 }
}

You can get this example code on our github page.

Phew! We covered a lot of material in this chapter.

We learned the following:

1. Installation of IntelliJ IDEA.
2. TestNG plugin installation on IntelliJ IDEA.
3. Setting up the Appium Project on IntelliJ IDEA.
4. Writing the first Automation Test on Android Real Device.
5. Writing the first Automation Test on iOS Simulator.

Along the way you learned a little bit about desired capabilities, locators and
assertions. All of this is a great grounding to continue your education into the world
of Automated testing and Appium.

Take a break and let’s continue our journey when you get back.

Making the move to automation testing with Appium

54 www.kobiton.com www.kobiton.com

Chapter-3: Understanding the
Desired Capabilities

In the previous chapter you were briefly introduced to Desired Capabilities. This is a
core capability of Appium. In this chapter we will take a deep dive into this feature.

Desired Capabilities help us to configure the Appium server and provide the criteria
which we wish to use for running our automation script. For example, we can
request the environment (emulator or real-device), which version of the operating
system to run the test on, and more. Desired Capabilities are key/value pairs
encoded in JSON format and are sent to the Appium Server by the Appium client
when a new automation session is requested.

Figure-1:Appium Architecture.

DesiredCapabilities is a predefined library and in order to use it you need to
import:

Org.openqa.selenium.remote.DesiredCapabilities

As Appium supports both Android and iOS, There are separate capabilities for
both. However most of the capabilities remain common to both platforms.

Making the move to automation testing with Appium

55 www.kobiton.com www.kobiton.com

Android:

{
 "platformName": "Android",
 "platformVersion": "8.0",
 "app": "/Users/username/Downloads/sample.apk",
 "deviceName": "c4e3f3cda"
 "automationName": "UiAutomator2"
}

iOS:

{
 "platformName": "iOS",
 "platformVersion": "11.4.1",
 "app": "/path/to/.ipa/file",
 "deviceName": "John’s iPhone",
 "udid": "bea36e2b0262ae4b77bd3463bd462922ee935d24"
 "automationName": "XCUITest"
}

The above is the JSON representation. To use this in code you can define the Desired
Capabilities (for Android) as below:

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability("platformName", "Android");
dc.setCapability("platformVersion", "8.0");
dc.setCapability("app",
"/Users/test/Downloads/FirstAutomationTest/src/test/resources
/DemoApp.apk");
dc.setCapability("deviceName", "c4e3f3cd");
dc.setCapability("automationName", "UiAutomator2");

In the above code snippet instead of defining Capability Name in a String you can use
the Appium predefined interfaces such as MobileCapabilityType,
IOSMobileCapabilityType and AndroidMobileCapabilityType to get Capability Names,
so the above code snippet can be written in a better way:

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME,

Making the move to automation testing with Appium

56 www.kobiton.com www.kobiton.com

"Android");
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"8.0");
dc.setCapability(MobileCapabilityType.APP,
"/Users/test/Downloads/FirstAutomationTest/src/test/resour
ces/DemoApp.apk");
dc.setCapability(MobileCapabilityType.DEVICE_NAME,
"c4e3f3cd");
dc.setCapability(MobileCapabilityType.AUTOMATION_NAME,
"UiAutomator2");

Desired capabilities for iOS and Android

We have many desired capabilities at our disposal depending on what we are trying
to accomplish. However, there are specific capabilities we need to set based on what
we are trying to test:

1) Mobile Web Android.
2) Mobile Web iOS.
3) Mobile Native Android.
4) Mobile Native iOS.

1) Mobile web - Android
If you want to automate the Chrome browser on Android device then you need
to use these Desired Capabilities.

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"Android");
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"OS version of your test device/simulator");
dc.setCapability(MobileCapabilityType.DEVICE_NAME, "Name
of your test device");
// This capability will open the Chrome browser instead of
Native app.
dc.setCapability(MobileCapabilityType.BROWSER_NAME,
MobileBrowserType.CHROME);
dc.setCapability(MobileCapabilityType.AUTOMATION_NAME,
"UiAutomator2");

Making the move to automation testing with Appium

57 www.kobiton.com www.kobiton.com

2) Mobile web - iOS

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"iOS");
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"OS version of your test device/simulator");
dc.setCapability(MobileCapabilityType.DEVICE_NAME, "Name
of your test device");
// This capability will open the Safari browser instead of
Native app.
dc.setCapability(MobileCapabilityType.BROWSER_NAME,
MobileBrowserType.SAFARI);
dc.setCapability(MobileCapabilityType.AUTOMATION_NAME,
"XCUITest");
// If you are using Real iPhone device then you need to
specify "udid" of device.
dc.setCapability("udid", "UDID of your test device");

3) Mobile native - Android

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"Android");
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"OS version of your test device/simulator");
dc.setCapability(MobileCapabilityType.APP,
"/path/to/.apk/file");
dc.setCapability(MobileCapabilityType.DEVICE_NAME, "Name
of your test device");
dc.setCapability(MobileCapabilityType.AUTOMATION_NAME,
"UiAutomator2");

4) Mobile native - iOS

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME, "iOS");
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION, "OS
version of your test device/simulator");
dc.setCapability(MobileCapabilityType.APP, "/path/to/.app or
.ipa/file");
dc.setCapability(MobileCapabilityType.DEVICE_NAME, "Name of
your test device");

Making the move to automation testing with Appium

58 www.kobiton.com www.kobiton.com

dc.setCapability(MobileCapabilityType.AUTOMATION_NAME,
"XCUITest");

List of all capabilities
There are many, many capabilities that Appium supports. We can categorize the
Capabilities into 3 parts:

1) General Capabilities.
2) iOS Capabilities.
3) Android Capabilities.

While you clearly don’t need to memorize all of these, we do suggest you spend
the time to familiarize yourself with these capabilities. As you use Appium more
and more and continue to consult this list, you will eventually have a good sense
of what capabilities are available to you.

General capabilities

Capability Description Values

automationName Which automation engine to use Appium (default) or
Selendroid or
UiAutomator2 or
Espresso for Android
or XCUITest for iOS

platformName Which mobile OS platform to use iOS, Android, or
Firefox OS

platformVersion Mobile OS version e.g., 7.1, 4.4

deviceName The kind of mobile device or emulator to use iPhone Simulator,
iPad Simulator,
iPhone Retina 4-inch,
Android Emulator,
Galaxy S4, etc.... On

Making the move to automation testing with Appium

59 www.kobiton.com www.kobiton.com

iOS, this should be
one of the valid
devices returned by
instruments with
instruments -s
devices. On Android
this capability is
currently ignored,
though it remains
required.

app The absolute local path or remote http URL
to a .ipa file (IOS), .app folder (IOS Simulator)
or .apk file (Android), or a .zip file containing
one of these (for .app, the .app folder must
be the root of the zip file). Appium will
attempt to install this app binary on the
appropriate device first. Note that this
capability is not required for Android if you
specify appPackage and appActivity
capabilities (see below). Incompatible with
browserName.

/abs/path/to/my.apk
or
http://myapp.com/ap
p.ipa

browserName Name of mobile web browser to automate.
Should be an empty string if automating an
app instead.

'Safari' for iOS and
'Chrome',
'Chromium', or
'Browser' for Android

newCommandTi
meout

How long (in seconds) Appium will wait for a
new command from the client before
assuming the client quit and ending the
session

e.g. 60

language (Sim/Emu-only) Language to set for the
simulator / emulator. On Android, available
only on API levels 22 and below

e.g. fr

locale (Sim/Emu-only) Locale to set for the e.g. fr_CA

Making the move to automation testing with Appium

60 www.kobiton.com www.kobiton.com

simulator / emulator.

udid Unique device identifier of the connected
physical device

e.g.
1ae203187fc012g

orientation (Sim/Emu-only) start in a certain orientation LANDSCAPE or
PORTRAIT

autoWebview Move directly into Webview context. Default
false

true, false

noReset Don't reset app state before this session. See
here for more details

true, false

fullReset Perform a complete reset. See here for more
details

true, false

eventTimings Enable or disable the reporting of the timings
for various Appium-internal events (e.g., the
start and end of each command, etc.).
Defaults to false. To enable, use true. The
timings are then reported as events property
on response to querying the current session.
See the event timing docs for the the
structure of this response.

e.g., true

enablePerforman
ceLogging

(Web and webview only) Enable
Chromedriver's (on Android) or Safari's (on
iOS) performance logging (default false)

true, false

printPageSource
OnFindFailure

When a find operation fails, print the current
page source. Defaults to false.

e.g., true

Making the move to automation testing with Appium

61 www.kobiton.com www.kobiton.com

Android capabilities
These Capabilities are available only on Android-based drivers (like UiAutomator2 for
example).

Capability Description Values

appActivity Activity name for the Android activity you
want to launch from your package. This
often needs to be preceded by a . (e.g.,
.MainActivity instead of MainActivity). By
default this capability is received from the
package manifest (action:
android.intent.action.MAIN , category:
android.intent.category.LAUNCHER)

MainActivity,
.Settings

appPackage Java package of the Android app you
want to run. By default this capability is
received from the package manifest
(@package attribute value)

com.example.android
.myApp,
com.android.settings

appWaitActivity Activity name/names, comma separated,
for the Android activity you want to wait
for. By default the value of this capability
is the same as for appActivity. You must
set it to the very first focused application
activity name in case it is different from
the one which is set as appActivity if your
capability has appActivity and
appPackage.

SplashActivity,
SplashActivity,OtherA
ctivity, *,
*.SplashActivity

appWaitPackage Java package of the Android app you
want to wait for. By default the value of
this capability is the same as for

com.example.android
.myApp,
com.android.settings

Making the move to automation testing with Appium

62 www.kobiton.com www.kobiton.com

appActivity

appWaitDuration Timeout in milliseconds used to wait for
the appWaitActivity to launch (default
20000)

30000

deviceReadyTimeou
t

Timeout in seconds while waiting for
device to become ready

5

androidCoverage Fully qualified instrumentation class.
Passed to -w in adb shell am instrument -
e coverage true -w

com.my.Pkg/com.my.
Pkg.instrumentation.
MyInstrumentation

androidCoverageEn
dIntent

A broadcast action implemented by
yourself which is used to dump coverage
into file system. Passed to -a in adb shell
am broadcast -a

com.example.pkg.EN
D_EMMA

androidDeviceReady
Timeout

Timeout in seconds used to wait for a
device to become ready after booting

e.g., 30

androidInstallTimeo
ut

Timeout in milliseconds used to wait for
an apk to install to the device. Defaults to
90000

e.g., 90000

androidInstallPath The name of the directory on the
device in which the apk will be push
before install. Defaults to
/data/local/tmp

e.g.
/sdcard/Downloa
ds/

adbPort Port used to connect to the ADB
server (default 5037)

5037

Making the move to automation testing with Appium

63 www.kobiton.com www.kobiton.com

systemPort systemPort used to connect to
appium-uiautomator2-server, default
is 8200 in general and selects one port
from 8200 to 8299. When you run
tests in parallel, you must adjust the
port to avoid conflicts. Read Parallel
Testing Setup Guide for more details.

e.g., 8201

remoteAdbHost Optional remote ADB server host e.g.:
192.168.0.101

androidDeviceSocke
t

Devtools socket name. Needed only
when tested app is a Chromium
embedding browser. The socket is
open by the browser and
Chromedriver connects to it as a
devtools client.

e.g.,
chrome_devtools
_remote

avd Name of avd to launch e.g., api19

avdLaunchTimeout How long to wait in milliseconds for
an avd to launch and connect to ADB
(default 120000)

300000

avdReadyTimeout How long to wait in milliseconds for
an avd to finish its boot animations
(default 120000)

300000

avdArgs Additional emulator arguments used
when launching an avd

e.g., -netfast

useKeystore Use a custom keystore to sign apks,
default false

true or false

Making the move to automation testing with Appium

64 www.kobiton.com www.kobiton.com

keystorePath Path to custom keystore, default
~/.android/debug.keystore

e.g.,
/path/to.keystore

keystorePassword Password for custom keystore e.g., foo

keyAlias Alias for key e.g., androiddebugkey

keyPassword Password for key e.g., foo

chromedriverExecut
able

The absolute local path to webdriver
executable (if Chromium embedder
provides its own webdriver, it should be
used instead of original chromedriver
bundled with Appium)

/abs/path/to/webdriv
er

chromedriverExecut
ableDir

The absolute path to a directory to look
for Chromedriver executables in, for
automatic discovery of compatible
Chromedrivers. Ignored if
chromedriverUseSystemExecutableis true

/abs/path/to/chrome
driver/directory

chromedriverChrom
eMappingFile

The absolute path to a file which maps
Chromedriver versions to the minimum
Chrome that it supports. Ignored if
chromedriverUseSystemExecutableis true

/abs/path/to/mappin
g.json

chromedriverUseSys
temExecutable

If true, bypasses automatic Chromedriver
configuration and uses the version that
comes downloaded with Appium. Ignored
if chromedriverExecutable is set. Defaults
to false

e.g., true

autoWebviewTimeo
ut

Amount of time to wait for Webview
context to become active, in ms. Defaults
to 2000

e.g. 4

Making the move to automation testing with Appium

65 www.kobiton.com www.kobiton.com

intentAction Intent action which will be used to start
activity (default
android.intent.action.MAIN)

e.g.android.intent.acti
on.MAIN,
android.intent.action.
VIEW

intentCategory Intent category which will be used to start
activity (default
android.intent.category.LAUNCHER)

e.g.
android.intent.catego
ry.LAUNCHER,
android.intent.catego
ry.APP_CONTACTS

intentFlags Flags that will be used to start activity
(default 0x10200000)

e.g. 0x10200000

optionalIntentArgu
ments

Additional intent arguments that will be
used to start activity. See Intent
arguments

e.g. --esn
<EXTRA_KEY>, --ez
<EXTRA_KEY>
<EXTRA_BOOLEAN_V
ALUE>, etc.

dontStopAppOnRes
et

Doesn't stop the process of the app under
test, before starting the app using adb. If
the app under test is created by another
anchor app, setting this false, allows the
process of the anchor app to be still alive,
during the start of the test app using adb.
In other words, with
dontStopAppOnReset set to true, we will
not include the -Sflag in the adb shell am
start call. With this capability omitted or
set to false, we include the -S flag. Default
false

true or false

unicodeKeyboard Enable Unicode input, default false true or false

resetKeyboard Reset keyboard to its original state, after
running Unicode tests with
unicodeKeyboard capability. Ignored if

true or false

Making the move to automation testing with Appium

66 www.kobiton.com www.kobiton.com

used alone. Default false

noSign Skip checking and signing of app with
debug keys, will work only with
UiAutomator and not with selendroid,
default false

true or false

ignoreUnimportantV
iews

Calls the
setCompressedLayoutHierarchy()uiautom
ator function. This capability can speed
up test execution, since Accessibility
commands will run faster ignoring some
elements. The ignored elements will not
be findable, which is why this capability
has also been implemented as a toggle-
able setting as well as a capability.
Defaults to false

true or false

disableAndroidWatc
hers

Disables android watchers that watch for
application not responding and
application crash, this will reduce cpu
usage on android device/emulator. This
capability will work only with
UiAutomator and not with selendroid,
default false

true or false

chromeOptions Allows passing chromeOptions capability
for ChromeDriver. For more information
see chromeOptions

chromeOptions:
{args: ['--disable-
popup-blocking']}

recreateChromeDriv
erSessions

Kill ChromeDriver session when moving
to a non-ChromeDriver webview. Defaults
to false

true or false

nativeWebScreensh
ot

In a web context, use native (adb)
method for taking a screenshot, rather
than proxying to ChromeDriver. Defaults

true or false

Making the move to automation testing with Appium

67 www.kobiton.com www.kobiton.com

to false

androidScreenshotP
ath

The name of the directory on the device
in which the screenshot will be put.
Defaults to /data/local/tmp

e.g.
/sdcard/screenshots/

autoGrantPermissio
ns

Have Appium automatically determine
which permissions your app requires and
grant them to the app on install. Defaults
to false. If noReset is true, this capability
doesn't work.

true or false

networkSpeed Set the network speed emulation. Specify
the maximum network upload and
download speeds. Defaults to full

['full','gsm', 'edge',
'hscsd', 'gprs', 'umts',
'hsdpa', 'lte',
'evdo']Check -
netspeed option
more info about
speed emulation for
avds

gpsEnabled Toggle gps location provider for
emulators before starting the session. By
default the emulator will have this option
enabled or not according to how it has
been provisioned.

true or false

isHeadless Set this capability to true to run the
Emulator headless when device display is
not needed to be visible. false is the
default value. isHeadless is also support
for iOS, check XCUITest-specific
capabilities.

e.g., true

uiautomator2Server
LaunchTimeout

Timeout in milliseconds used to wait for
an uiAutomator2 server to launch.

e.g., 20000

Making the move to automation testing with Appium

68 www.kobiton.com www.kobiton.com

Defaults to 20000

uiautomator2Server
InstallTimeout

Timeout in milliseconds used to wait for
an uiAutomator2 server to be installed.
Defaults to 20000

e.g., 20000

otherApps App or list of apps (as a JSON array) to
install prior to running tests

e.g.,
"/path/to/app.apk",
https://www.example
.com/url/to/app.apk,
["/path/to/app-
a.apk",
"/path/to/app-
b.apk"]

iOS capabilities

These Capabilities are available only on the XCUITest Driver and the deprecated
UIAutomation Driver.

Capability Description Values

calendarFormat (Sim-only) Calendar format to set for the
iOS Simulator

e.g. gregorian

bundleId Bundle ID of the app under test. Useful for
starting an app on a real device or for
using other caps which require the bundle
ID during test startup. To run a test on a
real device using the bundle ID, you may
omit the 'app' capability, but you must
provide 'udid'.

e.g.
io.appium.TestApp

udid Unique device identifier of the connected
physical device

e.g.
1ae203187fc012g

Making the move to automation testing with Appium

69 www.kobiton.com www.kobiton.com

launchTimeout Amount of time in ms to wait for
instruments before assuming it hung and
failing the session

e.g. 20000

locationServicesEnab
led

(Sim-only) Force location services to be
either on or off. Default is to keep current
sim setting.

true or false

locationServicesAuth
orized

(Sim-only) Set location services to be
authorized or not authorized for app via
plist, so that location services alert doesn't
pop up. Default is to keep current sim
setting. Note that if you use this setting
you MUST also use the bundleId capability
to send in your app's bundle ID.

true or false

autoAcceptAlerts Accept all iOS alerts automatically if they
pop up. This includes privacy access
permission alerts (e.g., location, contacts,
photos). Default is false. Does not work on
XCUITest-based tests.

true or false

autoDismissAlerts Dismiss all iOS alerts automatically if they
pop up. This includes privacy access
permission alerts (e.g., location, contacts,
photos). Default is false. Does not work on
XCUITest-based tests.

true or false

nativeInstrumentsLib Use native intruments lib (ie disable
instruments-without-delay).

true or false

nativeWebTap (Sim-only) Enable "real", non-javascript-
based web taps in Safari. Default: false.
Warning: depending on viewport size/ratio
this might not accurately tap an element

true or false

Making the move to automation testing with Appium

70 www.kobiton.com www.kobiton.com

safariInitialUrl (Sim-only) (>= 8.1) Initial safari url, default
is a local welcome page

e.g.
https://www.github.
com

safariAllowPopups (Sim-only) Allow javascript to open new
windows in Safari. Default keeps current
sim setting

true or false

safariIgnoreFraudWa
rning

(Sim-only) Prevent Safari from showing a
fraudulent website warning. Default keeps
current sim setting.

true or false

safariOpenLinksInBa
ckground

(Sim-only) Whether Safari should allow
links to open in new windows. Default
keeps current sim setting.

true or false

keepKeyChains (Sim-only) Whether to keep keychains
(Library/Keychains) when appium session
is started/finished

true or false

localizableStringsDir Where to look for localizable strings.
Default en.lproj

en.lproj

processArguments Arguments to pass to the AUT using
instruments

e.g., -myflag

interKeyDelay The delay, in ms, between keystrokes sent
to an element when typing.

e.g., 100

showIOSLog Whether to show any logs captured from a
device in the appium logs. Default false

true or false

Making the move to automation testing with Appium

71 www.kobiton.com www.kobiton.com

sendKeyStrategy strategy to use to type test into a test
field. Simulator default: oneByOne. Real
device default: grouped

oneByOne, grouped
or setValue

screenshotWaitTime
out

Max timeout in sec to wait for a
screenshot to be generated. default: 10

e.g., 5

waitForAppScript The ios automation script used to
determined if the app has been launched,
by default the system wait for the page
source not to be empty. The result must
be a boolean

e.g. true;,
target.elements().le
ngth > 0;,
$.delay(5000); true;

webviewConnectRet
ries

Number of times to send connection
message to remote debugger, to get
webview. Default: 8

e.g., 12

appName The display name of the application under
test. Used to automate backgrounding the
app in iOS 9+.

e.g., UICatalog

customSSLCert (Sim only) Add an SSL certificate to IOS
Simulator.

e.g.

-----BEGIN
CERTIFICATE-----
MIIFWjCCBEKg...

-----END
CERTIFICATE-----

webkitResponseTim
eout

(Real device only) Set the time, in ms, to
wait for a response from WebKit in a Safari
session. Defaults to 5000

e.g., 10000

Making the move to automation testing with Appium

72 www.kobiton.com www.kobiton.com

remoteDebugProxy (Sim only, <= 11.2) If set, Appium sends
and receives remote debugging messages
through a proxy on either the local port
(Sim only, <= 11.2) or a proxy on this unix
socket (Sim only >= 11.3) instead of
communicating with the iOS remote
debugger directly.

e.g. 12000 or
"/tmp/my.proxy.soc
ket"

Important capabilities
1) Reset strategies

In Mobile Application Automation, most of the execution time is spent on
Application installation. Sometimes you do not want to reinstall the
application (like between tests) so Appium has provided 2 capabilities named
noReset and fullReset which provides control over application installation
and you can leverage the right combination of the two flags.

noReset fullReset Result on iOS Result on Android

true true Error: The 'noReset' and 'fullReset' capabilities are mutually
exclusive and should not both be set to true

true false Do not destroy or shut down
simulator after test. Start tests
running on whichever simulator
is running, or device is plugged
in.

Do not stop app, do not clear
app data, and do not uninstall
apk.

false true Uninstall app after real device
test, destroy Simulator after sim
test.

Stop app, clear app data and
uninstall apk after test.

false false Shut down simulator after test.
Do not destroy simulator. Do
not uninstall app from real
device.

Stop and clear app data after
test. Do not uninstall apk

NOTE: You can know more about Appium Capabilities on Official Appium Docs
periodically: http://appium.io/docs/en/writing-running-appium/caps/

Making the move to automation testing with Appium

73 www.kobiton.com www.kobiton.com

The following additional capabilities are reprinted with permission from Jonathan
Lipps, Founding Principal of Cloud Grey, a mobile testing services company. Refer
to footnote for the source link.

2) Android-specific capabilities1

disableAndroidWatchers:
The only way to check for toast messages on Android is for the Appium
UiAutomator2 driver to run a loop constantly checking the state of the
device. Running a loop like this takes up valuable CPU cycles and has been
observed to make scrolling less consistent, for example. If you don't need the
features that require the watcher loop (like toast verification), then set this
cap to true to turn it off entirely and save your device some cycles.

autoGrantPermission:
Set to true to have Appium attempt to automatically determine your app
permissions and grant them, for example to avoid system pop ups asking for
permission later on in the test.

skipUnlock:
Appium doesn't assume that your device is unlocked, and it should be to
successfully run tests. So it installs and runs a little helper app that tries to
unlock the screen before a test. Sometimes this works, and sometimes this
doesn't. But that's beside the point: either way, it takes time! If you know
your screen is unlocked, because you're managing screen state with
something other than Appium, tell Appium not to bother with this little
startup routine and save yourself a second or three, by setting this cap to
true.

appWaitPackage and appWaitActivity:
Android activities can be kind of funny. In many apps, the activity used to
launch the app is not the same as the activity which is active when the user
initially interacts with the application. Typically it's this latter activity you care
about when you run an Appium test. You want to make sure that Appium
doesn't consider the session started until this activity is active, regardless of
what happened to the launch activity.

In this scenario, you need to tell Appium to wait for the correct activity, since
the one it automatically retrieves from your app manifest will be the launch
activity. You can use the appWaitPackage and appWaitActivity to tell Appium
to consider a session started (and hence return control to your test code)
only when the package and activity specified have become active. This can

1 From Jonathan Lipps’ blog: https://appiumpro.com/editions/24

Making the move to automation testing with Appium

74 www.kobiton.com www.kobiton.com

greatly help the stability of session start, because your test code can assume
your app is on the activity expects when the session starts.

ignoreUnimportantViews:
Android has two modes for expressing its layout hierarchy: normal and
"compressed". The compressed layout hierarchy is a subset of the hierarchy
that the OS itself sees, restricted to elements which the OS thinks are more
relevant for users, for example elements with accessibility information set on
them. Because compressed mode generates a smaller XML file, and perhaps
for other Android-internal reasons, it's often faster to get the hierarchy in
compressed mode. If you're running into page source queries taking a very
long time, you might try setting this cap to true.

Note that the XML returned in the different modes is ... different. Which
means that XPath queries that worked in one mode will likely not work in the
other. Make sure you don't change this back and forth if you rely on XPath!

3) iOS-specific capabilities2

usePrebuiltWDA and derivedDataPath:
Typically, Appium uses xcodebuild under the hood to both build
WebDriverAgent and kick off the XCUITest process that powers the test
session. If you have a prebuilt WebDriverAgent binary and would like to save
some time on startup, set the usePrebuiltWDA cap to true. This cap could be
used in conjunction with derivedDataPath, which is the path to the derived
data folder where your WebDriverAgent binary is dumped by Xcode.

useJSONSource:
For large applications, it can be faster for Appium to deal with the app
hierarchy internally as JSON, rather than XML, and convert it to XML at the
"edge", so to speak---in the Appium driver itself, rather than lower in the
stack. Basically, give this a try if getting the iOS app source is taking forever.

iosInstallPause:
Sometimes, large iOS applications can take a while to launch, but there's no
way for Appium to automatically detect when an app is ready for use or not.
If you have such an app, set this cap to the number of milliseconds you'd like
Appium to wait after WebDriverAgent thinks the app is online, before
Appium hands back control to your test script. It might help make session
startup a bit more stable.

maxTypingFrequency:
If you notice errors during typing, for example the wrong keys being pressed

2 Jonathan Lipps’ blog: https://appiumpro.com/editions/24

Making the move to automation testing with Appium

75 www.kobiton.com www.kobiton.com

or visual oddities you notice while watching a test, try slowing the typing
down. Set this cap to an integer and play around with the value until things
work. Lower is slower, higher is faster! The default is 60.

realDeviceScreenshotter:
Appium has its own methods for capturing screenshots from simulators and
devices, but especially on real devices this can be slow and/or flaky. If you're
a fan of the libimobiledevice suite and happen to have idevicescreenshot on
your system, you can use this cap to let Appium know you'd prefer to retrieve
the screenshot via a call to that binary instead of using its own internal
methods. To make it happen, simply set this cap to the string
"idevicescreenshot"!

simpleIsVisibleCheck:
Element visibility checks in XCUITest are fraught with flakiness and
complexity. By default, the visibility checks available don't always do a great
job. Appium implemented another type of visibility check inside of
WebDriverAgent that might be more reliable for your app, though it comes
with the downside that the checks could take longer for some apps. As with
many things in life, we sometimes have to make trade-offs between speed
and reliability.

NOTE: You can learn more about Android & iOS specific Capabilities on Jonathan
Lipps’ (Appium project lead and architect) blog:
https://appiumpro.com/editions/24

We suggest reviewing these capabilities and familiarize yourself with them. It
isn’t necessary to memorize them, but as you get more sophisticated testing
needs it will be good to keep coming back here to see which one will do the trick.
We’ll be using various forms of these capabilities throughout the rest of the book
so you will start getting more familiar with them as we work through more
examples.

Making the move to automation testing with Appium

76 www.kobiton.com www.kobiton.com

Chapter-4: Appium Locator
Finding Strategies

Understanding how to properly use Locators is key to building your automation
scripts. After all, if you’re unable to “find” the UI element, you cannot control it (such
as clicking a button).

In Mobile (or Web) Automation Testing automating any scenario follows these 2
steps:

1) Find the UI element locators (uniquely).
2) Perform an action on that element.

In this chapter we focus on the first step and will look into all the available Locator
Finding Strategies and discuss each strategy’s pros and cons.

So What is an Element Locator?
An Element Locator is nothing but an address that identifies a UI Element on a
Mobile App (or Website). As there are many UI elements present on a single mobile
application screen there can be a chance that same (generic)address can refer to
more than one element. This means that we need to find a unique address for the
element. As you will see, sometimes this is easy, and other times you have to do
some further exploration to uniquely identify your UI element. The way in which you
uniquely identify the element is called a locator strategy. Appium makes many
different strategies available.

If you recall our simple test cases in Chapter 2, our Android example used the
following code for identifying the Textview:

driver.findElement(By.id("Login Screen")).click();

Here id is the Locator strategy and Login Screen is the unique id(address). Think
of reading it as “Finding the element by <locator strategy> <element unique id>”. So
in this example we’re telling Appium to use the “id” strategy (used for finding
elements by unique ID) and the ID we’re using is “Login Screen”.

Making the move to automation testing with Appium

77 www.kobiton.com www.kobiton.com

The below image describes how can you find the Textview element for any android
application (in Java).

Figure-1:Locator Strategy(Java Example).

As you may expect, there are many different locator strategies available to you,
including:

1) Accessibility ID
2) Class name
3) ID
4) Name
5) XPath
6) Image (Recently Introduced)
7) Android UiAutomator (UiAutomator2 only)
8) Android View Tag (Espresso only)
9) IOS UIAutomation

Learning which type of Locator Strategy to use is part of the learning process of
becoming comfortable with Appium. We will go through all Locator Strategies and
discuss them in detail. Don’t worry about memorizing all of them … at this stage in
your journey you just need to become familiar with them and eventually you’ll
understand which are best to use in which scenarios. In fact, there are some tricks
coming up later that will automatically suggest which strategy to use! Often during
your script development you’ll wrestle with trying to identify a UI element. When
that happens, refer back to these different locator strategies to see which might best
fit your needs.

NOTE: All of the above Locator Strategies can be inspected using the Appium
Inspector Tool(for Android and iOS both). We will learn about that tool in the next
chapter. The screenshots that follow are using this Inspector to illustrate the locator.
The mobile app is depicted in the leftmost pane and when clicking an element we see
the attributes in the rightmost pane.

1) Accessibility ID
● This is the best preferred locator strategy in Appium. Always use this

one if you can.

Making the move to automation testing with Appium

78 www.kobiton.com www.kobiton.com

● It is a Cross-platform locator strategy as this works in a similar way
on iOS and Android which makes your code more reusable.

● iOS: If the accessibility id property(attribute) value is set at
development time (by the app developers) then you can inspect it
using the Appium Inspector(Android & iOS) or
UiAutomatorViewer(Android). When Accessibility Id property
value is not defined by developer, it is by default equals to the Name
of that UI Element.

● Android: Accessibility Id property is equals to content-desc
property(attribute) on Android.

Figure-2:Locator Type: Accessibility Id on Android Sample Application.

Example Usage in different programming languages:

1) Java:

WebElement chromeButtonElement =
driver.findElementByAccessibilityId(“buttonStartWebviewCD”);
MobileElement mobileElement =

Making the move to automation testing with Appium

79 www.kobiton.com www.kobiton.com

(MobileElement)chromeButtonElement;

2) Python:

element = self.driver.
find_element_by_accessibility_id(“buttonStartWebviewCD”)

3) JavaScript:

let element = await driver.
elementByAccessibilityId(“buttonStartWebviewCD”);

4) Ruby:

@driver.find_element(:accessibility_id,
"~buttonStartWebviewCD")

5) PHP:

$els = $this->element($this->using('accessibility id')-
>value(‘buttonStartWebviewCD’));

2) Class Name

● Finding an element using Class Name is generic and it does not
guarantee to find the unique element because many elements have
the same class name.

● iOS: In iOS the class name is the fully qualified name of UIAutomation
class, and it starts with “UIA” keyword such as UIAButton,
UIARadioButton and UIATextField for old versions of iPhone
Apps, and on recent versions made on Swift programming language
you can find the “XCUITest” keyword.

● Android: In Android, the class name is the fully qualified name of the
UIAutomator class and these are examples of it:
android.widget.TextView , android.widget.Button,
android.widget.ImageButton, android.widget.CheckBox
etc.

● Now, in the above image (fig. 2), as you can see for the Chrome

Button the class name is android.widget.ImageButton which is

Making the move to automation testing with Appium

80 www.kobiton.com www.kobiton.com

same for the User Registry button. Which leaves the question, how do
you get the right button? The answer is using “Indexing”

● In figure-2 above the index value of the Chrome Image Button is 0

while in below image you can see the index value of User Registry
Image button is 1, so by combination of locator and Index you can get
the needed Unique UI locator. This is NOT ADVISABLE as it does not
provide stability. There is a strong likelihood of indexes changing, for
example if a new Image button is added to the screen!).

Figure-3: Index of class Name: android.widget.ImageButton

● You can get the indexed values using the relevant programming
languages methods.

● This JAVA code will get the User Registry Image Button which has

Class name= android.widget.ImageButton and Index=2.

List<MobileElement> mobileElements = (MobileElement)
driver.findElementsByClassName(“android.widget.ImageButton”);

MobileElement mobileElement = mobileElement.get(1);

Making the move to automation testing with Appium

81 www.kobiton.com www.kobiton.com

NOTE: Actually You can get locators by two ways in Appium (for id, name,
className, and xpath).

1) Using Selenium Methods:

WebElement element =
driver.findElement(By.className(“android.widget.ImageButton”)
);

// OR

WebElement element =
driver.findElementByClassName(“android.widget.ImageButton”);

2) Using Appium (Selenium Wrapper) Methods:

MobileElement mobileElement = (MobileElement)
driver.findElement(By.className(“android.widget.ImageButton”)
);

// OR

MobileElement mobileElement = (MobileElement)
driver.findElementByClassName(“android.widget.ImageButton”);

3) ID
In Mobile Application Automation id is are in form of Native context, it is not
similar to Selenium WebDriver’s CSS id.

● id are also cross-platform locator strategy similar like
accessibility id.

● iOS: It will find elements by name and label attribute but before
that Appium will try to search for a accessibility id that will
match with the given id string.

● For Figure-4 screenshot below both locator strategies are valid.

driver.findElementById("IntegerA");

// OR

driver.findElementById("TextField1");

Making the move to automation testing with Appium

82 www.kobiton.com www.kobiton.com

Figure-4:Locator Type:Id on iOS Sample Application.

● Android: In Android, it’s resource-id attribute. It contains
common <package-name>:id/<id-name> string format.

● You can use either that full string (ex.

io.selendroid.testapp:id/startUserRegistration) or only <id-name>
(startUserRegistration). So in the below code both options are valid.

driver.
findElementById("io.selendroid.testapp:id/startUserRegistrati
on");

// OR

driver.findElementById("startUserRegistration");

Making the move to automation testing with Appium

83 www.kobiton.com www.kobiton.com

Figure-5:Locator Type:Id on Android Sample Application.

4) Name
● iOS & Android: It’s the Name of the element on both platforms. This

isn’t used as often as accessibility id and id strategies are
mostly used.

● In below image you can find the Name attribute using:

MobileElement element = driver.findElementByName("IntegerA");

Making the move to automation testing with Appium

84 www.kobiton.com www.kobiton.com

Figure-6: Locator Type:Name on iOS Sample Application.

5) XPath

● This locator strategy analyzes the XML structure of the app and
locates the element with respect to the other elements.

● The XPath is originally designed to allow for the navigation of XML

data with the purpose of locating unique UI elements.

● XPath selectors are not cross-platform.

● This strategy should only used when there is no Accessibility Id, Id or
Name assigned to an UI Element. XPath has performance and
stability issues but is very “brittle” changing across platforms and
even device manufacturers.

● This strategy comes to the rescue when you’ve tried the above

strategies and failed. As it depends on Parent XML nodes it’s really
very fragile because when any new UI element gets added or
removed, the XML structure is changed rendering your locators
broken.

● Now the question is why you would ever use XPath ?

○ It allows for the formulation of complex queries.
○ It can literally find any UI element in the XML structure

available to Appium. So even if no ID or Name is present, you
can still find it with XPath.

Making the move to automation testing with Appium

85 www.kobiton.com www.kobiton.com

● If you are using the Appium Inspector for inspection of the Application

XML structure then Appium will give you the XPath directly without
any extra effort.

Figure-7: Locator Type:XPath on iOS Sample Application.

● Using XPath you can use any attribute or/and combination of

attributes in order to find the element uniquely. Apart from the
above Xpath in the screenshot, all of the following XPaths are valid
and find the Compute Sum button uniquely.

MobileElement computeSumButton = driver.findElementByXPath
("//XCUIElementTypeButton[@name="ComputeSumButton"]");

// OR

MobileElement computeSumButton =
driver.findElementByXPath("(//XCUIElementTypeButton)[1]");

// OR

MobileElement computeSumButton = driver.findElementByXPath
("//XCUIElementTypeButton[@label='Compute Sum']");

● You can learn more about how you can find the Xpath from:

https://www.w3schools.com/xml/xpath_syntax.asp, and from this
link you can learn more about how you can properly use XPath with
Appium:
http://www.software-testing-tutorials-automation.com/2015/10/ui-
automator-viewer-get-android-app.htm

Making the move to automation testing with Appium

86 www.kobiton.com www.kobiton.com

6) Image
● Appium supports Image Comparison as a locator strategy which is

using the OpenCV library in the backend.

● The strings which are being used by this locator strategy are Base64-
encoded image files.

● So you need to convert image files into Base64-encoded image files

first and you need to pass that String into the locator.

● Below is the example:

String base64Image = //Code which will to convert Image file
to Base-64 String
WebElement element = driver.findElementByImage(base64Image);

● We will look into this locator strategy in more details in a dedicated

chapter later on.

7) Android UiAutomator (UiAutomator2 only)
● This is an Android Platform specific locator strategy.

● This is rarely used to find the element locators as it requires to have

prior knowledge of the UiSelector API (and of course it’s Android
only).

● It’s performance is slightly better than XPath.

● In this example we find the first Button element having the text Login:

String selector = "new UiSelector().text(“Cancel”))
.className(“android.widget.Button”))";

MobileElement element = (MobileElement)
driver.findElement(MobileBy.AndroidUIAutomator(selector));

8) Android View Tag (Espresso only)
● This is also an Android Platform specific locator strategy.

Making the move to automation testing with Appium

87 www.kobiton.com www.kobiton.com

● It locates an element using it’s view tag.

9) IOS UIAutomation
● This is iOS Platform specific locator strategy. It uses Apple’s

Instruments framework.

● It performs better than XPath.

● Example:

String selector = "**/XCUIElementTypeCell[`name BEGINSWITH
"P"`]/XCUIElementTypeButton[4]";

MobileElement element = (MobileElement)
driver.findElement(MobileBy.iOSClassChain(selector));

● In the above example we will find the 4th button anywhere under the

UI hierarchy and whose name begins with the character ‘P’.

Hopefully you’re starting to get an idea of when to use which locator. Don’t worry if
it isn’t immediately clear … the more you start building Appium scripts and the more
you keep reviewing these it will become more intuitive.

Generally speaking you will find you should mostly likely use Accessibly Id and Id
automation strategies. XPath is incredibly flexible as a fallback when no ID exists, but
tends to be brittle. Your best option is to work with the developers to add unique IDs
if they don’t exist. This will make for far more robust test scripts.

Making the move to automation testing with Appium

88 www.kobiton.com www.kobiton.com

Chapter-5: The Appium
Inspector

As you learned in the previous chapter, In order to perform automation it’s
necessary to locate the unique selectors for:

1) Mobile Applications and
2) Mobile Web Browser(Chrome).

However, if you haven’t already realized (you soon will!), finding these unique
elements can sometimes be painful. And this is where the Appium Inspector comes
into play.

Appium inspection is known by many names such as Element Extraction, UI Element
Identification, Locator Finding etc. It is the process by which which you can locate or
find elements in your mobile application (native only).

Appium inspection is a standard procedure to identify the UI elements of a mobile
app uniquely. It works with both real devices or simulators(iOS) or
emulators(Android).

NOTE: The Appium Inspection tool does not support finding the locators on Web
Browser(Chrome) as it is specifically designed to fetch the attributes for Native
Mobile Application only.

The Appium Desktop Application is a combination of the Appium server itself and the
Element inspector, which is designed to help you discover all the visible elements of
your mobile application while developing your test scripts.

You can use it for native apps...

1) To identify and understand the element hierarchy: For developers this may
be trivial but for testers it is definitely useful information on how certain UI
elements are aligned with each other and what other layers/fragments/etc
the app may have.

2) To find the name, description, value and other attributes of the
element/object: Objects have certain characteristics that can be identified
through this tool and then used with the xpath command.

Making the move to automation testing with Appium

89 www.kobiton.com www.kobiton.com

3) To record your manual actions with the app: In order to record your actions,
you need either the Appium Inspector or some other tool that can access
those elements.

Different element inspector tools that helps you to
identify elements in mobile app
There are many different tools that help you inspect elements in mobile apps. But
we will cover the most important and used Element Inspectors:

1) Appium Inspector:
You can use this inspector for both Android and iOS apps (for iOS apps, you
would need a Mac)

2) UiAutomatorViewer(Android):
This is a tool provided by Android Studio that lets you inspect elements in
your mobile app.

There is one important factor in that the way you inspect elements in mobile
app is exactly the same in UIAutomatorViewer and Appium Desktop
Inspector. The are slight differences in the UI of both the tools, but the
underlying logic of identifying elements remains the same.

Appium Desktop Inspector uses the same methods as UI Automator Viewer
to identify the elements in your mobile app:

● Find element by ID
● Find element by ClassName
● Find element by Accessibility ID
● Find element by XPath

Also, the properties of the mobile elements, such as resource-id, content-
desc, text etc, will be the same in both the tools. We will explore
UIAutomatorViewer(For Android) in the next chapter.

3) Accessibility Inspector(iOS):
The Accessibility Inspector is a tool that shows all of the properties and
values, methods (actions that can occur from elements on the screen), and
position of the object that's currently being selected on the screen.

Making the move to automation testing with Appium

90 www.kobiton.com www.kobiton.com

In this chapter we will discuss the most used and popular tools to find the unique
and correct element locator.

Element extraction on mobile native applications using
Appium Inspector
Now let’s discuss how you can extract the elements using Appium Inspector:

1) Open the Appium Desktop Application:

Figure-1: Appium Desktop Application.

2) Start the Server by clicking on the Start Server button

Making the move to automation testing with Appium

91 www.kobiton.com www.kobiton.com

Figure-2: Appium Server Is Running.

3) Click on the Search button and open the Appium Inspector Session.

Figure-3: Appium Inspector Session.

4) As we discussed in Chapter 3 you need to provide the correct set of Desired

Capabilities.

Android:

{
 "platformName": "Android",
 "platformVersion": "8.1", //<<Android Version of connected
Device>>
 "app": "/path/to/.apk/file",
 "deviceName": "c33143r", //<<get device name using: $ adb
devices>>
 "automationName": "UiAutomator2"
}

Making the move to automation testing with Appium

92 www.kobiton.com www.kobiton.com

iOS(Real Device):

{
 "platformName": "iOS",
 "platformVersion": "11.4",
 "app": "/path/to/.ipa/file",
 "deviceName": "John’s iPhone", //<<get it using iTunes>>
 "udid": "bea36e2b0262ae4b77bd3463bd462922ee935d24", //<<get
it using iTunes>>
 "automationName": "XCUITest"
}

iOS(Simulator):

{
 "platformName": "iOS",
 "platformVersion": "11.4",
 "app": "/Users/username/Downloads/sample.ipa",
 "deviceName": "iPhone X", //<<(iPhone 7, iPhone 7 Plus
etc..)You can get devices from: "$ instruments -s devices">>
 "automationName": "XCUITest"
}

Below are the screenshots of Desired Capabilities for Android(Real Device) and
iOS(Real Device and Simulator).

Making the move to automation testing with Appium

93 www.kobiton.com www.kobiton.com

Figure-4: Android Desired Capabilities for Real Android Device.

Figure-5: iOS Desired Capabilities for Real iOS Device.

Figure-6: iOS Desired Capabilities for iOS Simulator.

Making the move to automation testing with Appium

94 www.kobiton.com www.kobiton.com

5) You can also save the Desired Capabilities for a particular configuration by

clicking on the Save/Save As.. button.

Figure-7:Saved Capabilities Set.

6) Click on the Start Session button - it will take some time because the Appium
server will install the mentioned app to your connected device/simulator and
then it will analyze the Application XML and underlying structure. After some
time you can see the a window similar to:

Making the move to automation testing with Appium

95 www.kobiton.com www.kobiton.com

Figure-8: Appium Inspector Session(iOS).

Figure-8.1: Appium Inspector Session(Android).

Making the move to automation testing with Appium

96 www.kobiton.com www.kobiton.com

As you can see you can get the XML structure of all the visible elements on
the screen. Using the best or most appropriate locators strategy(accessibility
id, id, class name, xpath etc.) you can get the valid unique locators.
Additionally, Appium inspector supports many features:

● A great feature of Appium is it will give you the best locator strategies
listed automatically, so in the above image you can see that Appium is
suggesting accessibility id and xpath selectors for the selected
TextField on the screen. Isn’t that convenient?

● But we have only looked at the first initialized screen.

What if you are navigating to another page and want to find elements
on that screen? Would Appium fetch the new screenshot and extract
the XML structure automatically?
Unfortunately the answer is NO, you need to manually click on
Refresh Source & Screenshot button after changing the screen in
order to get that screen’s elements selectors.

Figure-9:Refresh Source & Screenshot.

● Appium Inspector also provides some actions on elements such as
Swiping, Tap on Coordinates etc.

Figure-10: Swipe By coordinates.

Making the move to automation testing with Appium

97 www.kobiton.com www.kobiton.com

Figure-11: Tap By Coordinates.

● The Appium Inspector session also provides script recording
functionality which can save a lot of time.

Figure-12: Start Recording.

Figure-13: Recording started.

● Appium Inspector also supports the reverse case - meaning thay by

using the locator you can search for the element on the UI.

Making the move to automation testing with Appium

98 www.kobiton.com www.kobiton.com

Figure-14: Search for element.

Figure-15: Searched Locator.

7) There is also a feature where you can Attach to existing Session. You need to
provide just the session-id (as shown in the following screenshot). It is useful
for when you already have an Appium session running. This (attaching
session) is possible because the inspector is an Appium client, not Appium
server.

Making the move to automation testing with Appium

99 www.kobiton.com www.kobiton.com

Figure-16: Attach to Session...

8) You can inspect elements on another custom appium server by providing the

following information under the “Custom Server” tab:
1) Remote Host Ip address.
2) Remote Host Port.
3) Remote Host Path.

Figure-17: Custom Server Configuration.

9) Appium supports element inspection on remote devices.
There are number of vendors that provide cloud based real-devices for
testing mobile apps, including:

Making the move to automation testing with Appium

100 www.kobiton.com www.kobiton.com

1) Kobiton,
2) Saucelabs,
3) TestObject,
4) Headspin,
5) BrowserStack,
6) Bitbar cloud,
7) Kobiton.

Figure-21: Kobiton Remote Inspection Configuration.

Comparison between iOS & Android locator strategy
Below is the mapping between Attributes from Appium Inspector(or
UiAutomatorViewer) and Appium Locator Strategy for Android/iOS.

Android

Attribute Locator Strategy(Android)

text Name

resource-id Id

class Class Name

content-desc Accessibility Id

Making the move to automation testing with Appium

101 www.kobiton.com www.kobiton.com

iOS

Attribute Locator Strategy(Android)

name Name, Id

label Id

type Class Name

accessibility id Accessibility Id

In this chapter we learned how to find elements using the Appium Inspector tool. In
the next chapter we are going to see an alternative option UiAutomationViewer
(only for Android) to inspect the UI elements. Before that, let’s turn to how we can
use Appium to extract elements on the mobile web browser.

Element extraction on a mobile web browser
In this section we are going to talk about how we can get the UI locators for the
websites which we will be automating in a Mobile Chrome browser.

Make sure you use the mobile version of the site you’re looking to test. For example
http://m.facebook.com is the mobile website, while http://www.facebook.com is
the default website on Desktop. However you can open http://m.facebook.com on
your Desktop and can get the mobile view on your desktop. So ultimately the first
thing is we need to get the Mobile website which we are interested in to be
automated.

After getting the Website URL we need to find the locators of the elements we will
be interacting with. This is a bit different to getting the elements from a Mobile
Native application. On a Mobile Native application we can get the elements using the
Appium Inspector while for Website automation we can get the UI elements from
the browser itself, we don’t need to rely on any third party tool.

If you’re familiar with Selenium then you already know how to get website UI
elements.

Below are the locator strategies to get the UI Element locators:

● ID
● Name
● Class Name
● CSS Locators

Making the move to automation testing with Appium

102 www.kobiton.com www.kobiton.com

● XPath
● LinkText
● Partial Link Text

1) ID
● Id = “m_login_email” for the “Mobile number or email address”

textfield

Figure-22: Id: Locator Strategy.

Making the move to automation testing with Appium

103 www.kobiton.com www.kobiton.com

Figure-23: Id: Find the Id Locator Strategy on DOM.

● Selector Code:

driver.findElement(By.id("m_login_email"));

NOTE: If you assign ‘#’ before id name, it becomes the CSS Selector.

2) Name
● Name = “email” for the “Mobile number or email address” textfield

Figure-24: Name: Locator Strategy.

● Selector Code:

driver.findElement(By.name(“email”));

3) Class Name
● Class Name = “_56bg _4u9z _5ruq” for the “Mobile number or email

address” textfield. Please note that use this locator when the class
name is defined only once in DOM. If more than one class name found
in DOM, please don’t use it.

Figure-25: Class Name: Locator Strategy.

● Selector Code:

driver.findElement(By.className(“_56bg _4u9z _5ruq”));

Making the move to automation testing with Appium

104 www.kobiton.com www.kobiton.com

4) CSS Selector
● CSS Selector = “._56bg._4u9z._5ruq” for the “Mobile number or

email address” textfield.

Figure-26: CSS Selector: Locator Strategy.

● In order to use CSS Selector using Class Name, You need to
remember that . should be placed at the first letter of class name and
every space in class name must be replaced by . So as we seen on
previous image that class name = “_56bg _4u9z _5ruq” for “Mobile
number or email address” textfield.
But we need to place . before the class name so it would be “._56bg
_4u9z _5ruq” and we also need to replace space with . so the final
CSS Selector would be “._56bg._4u9z._5ruq”

● In order to use CSS Selector using Id, You need to place # before the

Id.
So for Id = “m_login_email” the CSS Selector =
“#m_login_email”

● In order to use CSS Selector using Name or other Attribute, You need

to define the attribute in square brackets like:
[attribute _name = ”attribute_value”]
For Name = “”
So for Name = “email” the CSS Selector =
“[name=’email’]”

● Selector Code:

Making the move to automation testing with Appium

105 www.kobiton.com www.kobiton.com

driver.findElement(By.cssSelector("._56bg._4u9z._5ruq"));

NOTE: You can learn more about CSS selectors here:
https://www.softwaretestinghelp.com/css-selector-selenium-locator-selenium-
tutorial-6/

5) XPath
● XPath Selector = “//*[@class=’_56bg _4u9z _5ruq’]” OR

“//input[@id='m_login_email']” OR “//input[@name='email']” for
the “Mobile number or email address” textfield.

Figure-27: XPath Selector: Locator Strategy.

● This locator should be your last option to use as it is also unreliable,

unstable and has performance issues like Native Mobile
Applications.

● XPath is relative Path strategy so In order to create XPath using Class

Name, You need to put the // first thing first, it means it will search
the element anywhere on DOM. After // you can put the Tag name
such as input, a, div etc. And last you need to put attributes in this
format:
[@attribute _name = “attribute_value”] so the final
element XPath selector would be: //*[@class="_56bg _4u9z
_5ruq"] OR //input[@class="_56bg _4u9z _5ruq"]

Making the move to automation testing with Appium

106 www.kobiton.com www.kobiton.com

● Selector Code:

driver.findElement(By.xpath("//*[@class=’_56bg _4u9z
_5ruq’]"));

NOTE: You can learn more about XPath selectors here:
https://www.guru99.com/xpath-selenium.html

6) LinkText and Partial LinkText
● LinkText Selector = “Help Centre” for the Help Center link shown in

the image below.

● Partial LinkText Selector = “Help Cent” will work the same way as
above (full) LinkText locator.

● This locator strategy applies to get the UI Locator for the Link Text.

Figure-28: LinkText: Locator Strategy.

● Selector Code(Link Text):

driver.findElement(By.linkText("Help Centre")).click();

● Selector Code(Partial Link Text):

driver.findElement(By.partialLinkText("Help Cen")).click();

Mobile browser automation - Sample test case
Let’s put all that theory into some practice to help make the concept more
concrete. We have created a sample automation test case/script which will:

1) Open Chrome/Safari Browser on the relevant device.

Making the move to automation testing with Appium

107 www.kobiton.com www.kobiton.com

2) Fill the Username and Password.
3) Click on the Login button.

Android
You can find the Android Code below:

import io.appium.java_client.AppiumDriver;
import io.appium.java_client.android.AndroidDriver;
import
io.appium.java_client.remote.AndroidMobileCapabilityType;
import io.appium.java_client.remote.IOSMobileCapabilityType;
import io.appium.java_client.remote.MobileCapabilityType;
import org.openqa.selenium.By;
import org.openqa.selenium.remote.BrowserType;
import org.openqa.selenium.remote.CapabilityType;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.testng.annotations.BeforeTest;
import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class AndroidBrowserTest {

 public AndroidDriver driver;

 @BeforeTest
 public void setUp() throws MalformedURLException {
 String appiumServerURL =
"http://127.0.0.1:4723/wd/hub";

 DesiredCapabilities dc = new DesiredCapabilities();
 dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"Android");

dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"8.0");
 dc.setCapability(MobileCapabilityType.BROWSER_NAME,
BrowserType.CHROME);
 dc.setCapability(MobileCapabilityType.DEVICE_NAME,
"c4e3f3cd");

Making the move to automation testing with Appium

108 www.kobiton.com www.kobiton.com

 dc.setCapability(MobileCapabilityType.AUTOMATION_NAME,
"UiAutomator2");

 driver = new AndroidDriver(new URL(appiumServerURL),
dc);
 }

 @Test
 public void verifyUserCanLoginToFaceBook() throws
InterruptedException {
 String username = ""; // Enter your valid facebook
username
 String password = ""; // Enter your valid facebook
password

 driver.get("https://m.facebook.com/");

driver.findElement(By.id("m_login_email")).sendKeys(username)
;

driver.findElement(By.id("m_login_password")).sendKeys(passwo
rd);
 driver.findElement(By.name("login")).click();
 }
}

iOS
You can find the iOS Code below:

import io.appium.java_client.ios.IOSDriver;
import io.appium.java_client.ios.IOSElement;
import io.appium.java_client.remote.MobileCapabilityType;
import org.openqa.selenium.By;
import org.openqa.selenium.remote.BrowserType;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.testng.Assert;
import org.testng.annotations.BeforeTest;
import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

Making the move to automation testing with Appium

109 www.kobiton.com www.kobiton.com

public class iOSBrowserTest {
 public IOSDriver<IOSElement> driver;

 @BeforeTest
 public void setUp() throws MalformedURLException {
 String appiumServerURL =
"http://127.0.0.1:4723/wd/hub";

 DesiredCapabilities dc = new DesiredCapabilities();
 dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"iOS");

dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"11.4");
 dc.setCapability(MobileCapabilityType.BROWSER_NAME,
BrowserType.SAFARI);
 dc.setCapability(MobileCapabilityType.DEVICE_NAME,
"iPhone X");

 driver = new IOSDriver<IOSElement>(new
URL(appiumServerURL), dc);
 }

 @Test
 public void verifyValidUserCanLoginToFaceBook() throws
InterruptedException {
 String username = ""; // Enter your valid facebook
username
 String password = ""; // Enter your valid facebook
password

 driver.get("https://m.facebook.com/");

driver.findElement(By.id("m_login_email")).sendKeys(username)
;

driver.findElement(By.id("m_login_password")).sendKeys(passwo
rd);
 driver.findElement(By.name("login")).click();
 }
}

Making the move to automation testing with Appium

110 www.kobiton.com www.kobiton.com

You can find this project on our Github page.

Making the move to automation testing with Appium

111 www.kobiton.com www.kobiton.com

Chapter-6: Walkthrough of
UIAutomator for Android and
Accessibility Inspector for iOS for
Element Extraction.
In the last chapter we discussed the Appium Inspector tool and learned how we can
extract the elements for any application. Appium Inspector is a great tool to extract
elements from Android and iOS both. However, it can take some time to do so.

There is another way: UiAutomatorViewer(Mac & Windows) and Accessibility
Inspector(Mac) are handy tools to extract the elements from Android and iOS
Applications respectively.

The reason why UiAutomatorViewer and Accessibility Inspector is fast because it
does not involve the application installation part, it just fetches the XML structure of
the current screen on the device, no matter which application is open and displayed.

In this chapter we will look into UiAutomatorViewer and Accessibility Inspector tools.

1. UiAutomatorViewer:
UiAutomatorViewer is the Android SDK part and it’s packaged with it, so you
don’t need to install it separately. It’s a tool like Appium Inspector which lets you
inspect the UI(XML Structure) of the application and gives you the attributes of
UI element.

NOTE: Before using this tool make sure SDK is properly downloaded and the PATH
is set properly.

1) The first step to work with UiAutomatorViewer is you need to connect the

Real(Physical) Android device to your computer (using USB cable).

2) Once you connect the device you can find the device name using: $ adb

devices

Figure-1: Android device is connected.

Making the move to automation testing with Appium

112 www.kobiton.com www.kobiton.com

If your device is not connected properly then you might get error: “No
Android devices were detected by adb.”

Figure-2: No Android device is connected error dialog.

3) After connecting the device, you need to open the UiAutomatorViewer from

SDK directory. You can find UiAutomatorViewer under Android SDK>tools>bin
directory.

Figure-3: Path to UiAutomatorViewer (on Mac).

Making the move to automation testing with Appium

113 www.kobiton.com www.kobiton.com

Figure-4: UiAutomatorViewer (on Mac).

Figure-5: UiAutomatorViewer Window (on Mac).

4) Now open the specific application screen on the connected device for which
you want to extract the elements.

5) In order to fetch that screen’s XML structure you need to press the (second)

mobile icon on UiAutomatorViewer window.

Figure-6: Click on second Mobile icon.

Making the move to automation testing with Appium

114 www.kobiton.com www.kobiton.com

Figure-7: Obtaining Device screenshot and fetching XML structure.

Figure-8: Sample application screen.

You can observe here that left side part gives you the screenshot of the
current screen from your connected device and the right side is divided into 2
parts.

Making the move to automation testing with Appium

115 www.kobiton.com www.kobiton.com

1) The upper half contains the XML hierarchy of Screen and selected
node.

2) The lower half contains the selected node’s attributes with their
values.

Now you can get the valid selectors such as cont-desc(accessibility id), id,
class name, xpath etc. from the attributes section and start automating the
application right away.

The following table gives the mapping between attributes and Appium
locator strategies:

Attribute Locator Strategy

text Name

resource-id Id

class Class Name

content-desc Accessibility Id

So, as you can see this tool is similar to the Appium Inspector, but the only
difference is this tool doesn't take much time to get UI element locators.

2. Accessibility Inspector:
Accessibility Inspector is a common Inspector tool included in XCode and
specially designed for Mac OS to get the basic details such as Label, Title, Value
and Type for any UI element from opened application on Mac OS.

It does not give many details and attributes of UI elements but it is handy tool to
get the basic information about the element rapidly.

1) On Spotlight Search, search for the Xcode and open it.

Figure-9: XCode on Spotlight Search.

Making the move to automation testing with Appium

116 www.kobiton.com www.kobiton.com

2) After XCode is open, on the Menu bar Select the XCode > Open Developer

Tool > Accessibility Inspector

Figure-10: Accessibility Inspector on XCode.

3) Below is the dialog of Accessibility Inspector.

Making the move to automation testing with Appium

117 www.kobiton.com www.kobiton.com

Figure-11: Accessibility Inspector.

4) Now open iOS Simulator and open the application for which you want to
extract the locators.

5) Now click on this icon: and select the “Compute Sum” textfield on

Simulator.

Making the move to automation testing with Appium

118 www.kobiton.com www.kobiton.com

Figure-12: Locate the selector on Accessibility Inspector.

As you can see you can get the Basic attributes such as Label, Title, Value and
Type.
While with the Appium Inspector you get many more attributes:

Making the move to automation testing with Appium

119 www.kobiton.com www.kobiton.com

Figure-13: Locate the selector on Appium Inspector.

Here, Appium Inspector adds more value to the iOS part, whereas the Accessibility
Inspector provides only basics values which in some case may not be sufficient.

There are also many third party software and tools available which helps to identify
the UI locators.

Ultimately you will figure out which tool best fits into your workflow, but it is a good
idea to have a broad understanding of the choices at your disposal.

Making the move to automation testing with Appium

120 www.kobiton.com www.kobiton.com

Chapter-7: Developing a Test
Automation Framework for
Appium using Page Object
Modeling(POM).

Automation Testing with Appium fundamentally boils down to a simple 2-step
process:

1. Identify the UI Element locator(address)
2. Perform an action on it.

So far we have looked into the basics of Appium and learned how can you build a
simple test case.

But that was just the beginning! It’s time to ramp our skills up a notch.

Now that you know how to locate elements, we could continue exploring the
different actions you can perform on those elements. However, we’re going to leave
that for a later section, and cover an important topic. Technically, the material
covered here is optional, but we’d urge you to follow along.

In the real world, Appium is used to automate an entire mobile application and the
simple idea to put all element locators, and interactions with those locators, into one
file (as we have been doing) won’t help us. It’s just bad design...when we inevitably
go back to increase automation test coverage we would likely end up with an
unmaintainable project - large project files, complex code and duplicate usage of
element locators will become the bane of your daily automation life.

Moreover, even a small change in the application UI would break the existing
working locators, and if we use the linear structure in our test code it will become so
difficult to fix that locator because we need to replace the invalid locator from each
place in the code.

For Example, most apps or websites have a ‘home’ page, such as a dashboard,
containing a number of menu options. Many automation test cases might click on
these menu options to perform a specific task. Now imagine that the UI is
changed/revamped and menu buttons are relocated and some of them removed -

Making the move to automation testing with Appium

121 www.kobiton.com www.kobiton.com

this will lead to automation tests failure because scripts will not be able to find the
particular element.

So in order to reduce that pain we need to use some kind of structure which can eliminate
those difficulties. And that masterpiece code structure (or framework as it’s more commonly
called!) is known as Page Object Modeling.

Page Object Modeling(POM)
Page Object Model is a popular and widely used Design Pattern in Appium (and
Selenium) Test Automation.

It is popular because it enhances test maintenance and reduces code duplication.
The main logic behind the Page Object Model framework is to keep Locators and
Tests cases separate from each other. This allows you to easily update locators when
the app changes, without affecting your test cases. It’s a cleaner abstraction of
duties.

Page Object is an object-oriented class that keeps all the element locators referring
to a particular page of your Application Under Test and it has interaction methods
for all relevant locators that have been defined. These will be used by the Test Cases
in a particular order according to the test requirements of the feature being tested.

The main advantage to using this is that whenever a UI change causes a test script
failure, you only need to apply changes on Page Object classes to fix the
automation script.

The basic structure of the Page Object Model framework is depicted below:

Making the move to automation testing with Appium

122 www.kobiton.com www.kobiton.com

Figure-1: Page Object Modeling Structure(POM).

NOTE: The above structure just illustrates one possible Page Object Model structure -
It may vary according to the needs of your app and test cases, and POM works best
for multi page applications.

You don’t need quite as complex a POM structure as shown above, especially when
you’re learning. In this tutorial we will use a “lighter” version of POM illustrated
below:

Making the move to automation testing with Appium

123 www.kobiton.com www.kobiton.com

Figure-2: Page Object Modeling Structure(Light-weight).

We have removed the WebDriver as separate entity and included it in the
BaseTestCase. The reason for doing so is we want to simplify things, and
WebDriverManager makes more sense when we are working with many different
test execution clients(browsers).
It is especially useful to have the WebDriverManager class when working with
Selenium as there are many browsers out there such as Chrome, Firefox, Safari,
Opera etc and each have some specific Desired Capabilities.

But here we are dealing with iOS and Android Devices only so in lieu of creating a
separate WebDriverManager class we can include the WebDriver creation logic
inside of BaseTestCase.

Follow the below steps to implement this (steps shown below remain same for
Intellij IDEA and Eclipse IDE):

1) Create a new Java Project:

Making the move to automation testing with Appium

124 www.kobiton.com www.kobiton.com

Figure-3: Create Java Project.

2) Give a valid GroupId and ArtifactId:

Figure-4: GroupId and ArtifactId.

3) Check the configuration and click on Next button.

Making the move to automation testing with Appium

125 www.kobiton.com www.kobiton.com

Figure-5: Check the Configuration.

4) Check the Project Name, Project Location and More Settings.

Figure-6: Name of New Project and other details.

Making the move to automation testing with Appium

126 www.kobiton.com www.kobiton.com

5) When you click on the Finish button it will build the whole project and link
the default dependencies.

Figure-7: Gradle Build.

6) As we are using Gradle as a build tool(No offense to Maven), the first thing

you need to do is to add the gradle dependencies and Import the changes.

Figure-8: build.gradle

Making the move to automation testing with Appium

127 www.kobiton.com www.kobiton.com

7) You can observe that there is a src directory created by default (By Gradle).

Making the move to automation testing with Appium

128 www.kobiton.com www.kobiton.com

Figure-9: Directories created by Gradle.

8) After adding the Appium and TestNG dependencies we will create the Page

Object package inside src > test > java

Figure-10: Adding new package inside src/test/java.

Making the move to automation testing with Appium

129 www.kobiton.com www.kobiton.com

Figure-11: Package Name.

9) Using the same approach add a testcases and utils package.

Figure-12: Package Name: utils.

Figure-13: Package Name: testcases.

10) The first step is to add the configuration.properties file under resources/

directory. Now what do we mean by this? According to the Page Object
Model we need to put all the configuration related values in one file and in
Java we can use a .properties file for it.

A .properties file contains key/value pairs so if we want to change some
configuration like changing the connected device name, we just need to
change the value of android.device.name key. This means less changes to
our code when things change.

Making the move to automation testing with Appium

130 www.kobiton.com www.kobiton.com

Figure-14: configuration.properties

To get the value of a key from the .properties file we need to implement
methods and we will use the PropertyUtils class for that.

11) Now we need to add Utility classes such as PropertyUtils, WaitUtils etc.
● In test automation Wait has got a vital role. In application automation

when you navigate to another screen or page, there will be a delay
due to resource loading and if we don’t apply the wait then
Automation test scripts can break. That is, the script is attempting to
operate on elements that have not yet rendered or loaded. So to
avoid that we need to tell Appium’s webdriver object that we are
expecting some delay to get the mobile element on the new
screen/page and this is known as a Wait.

There are basically 3 Types of waits in Appium (or Selenium) and we
need to use various forms of them at various times, so we can create
useful methods based on the wait and put them together in the
WaitUtility Class. Then, whenever we need to use the wait we will use
the WaitUtility class.

We will see more about Wait in an upcoming chapter. Here is our code
which you can use right now, and you will learn more about how it
works in a subsequent section. For right now, just know that you have
this WaitUtility class that you will use.

Making the move to automation testing with Appium

131 www.kobiton.com www.kobiton.com

WaitUtils.java

package utils;

import io.appium.java_client.ios.IOSElement;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;

import java.util.List;
import java.util.concurrent.TimeUnit;

/**
 * This will contain all wait related utility methods.
 *
 * @author prat3ik
 */
public class WaitUtils {

 public final int explicitWaitDefault =
PropertyUtils.getIntegerProperty("explicitWait", 10);

 /**
 * This method is for static wait
 *
 * @param millis
 */
 public void staticWait(final long millis) {
 try {
 TimeUnit.MILLISECONDS.sleep(millis);
 } catch (final InterruptedException e) {
 }
 }

 /**
 * To wait for button to be clickable

Making the move to automation testing with Appium

132 www.kobiton.com www.kobiton.com

 *
 * @param driver
 * @param element
 */
 public void waitForElementToBeClickable(final WebElement
element, final WebDriver driver) {
 new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.elementToBeClickable(element));
 }

 /**
 * To wait for element (By) to be invisible
 *
 * @param driver
 * @param locator
 */
 public void waitForElementToBeInvisible(final By locator,
final WebDriver driver) {
 long s = System.currentTimeMillis();
 new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.invisibilityOfElementLocated(locato
r));
 }

 /**
 * To wait for given element (By) to be present
 *
 * @param driver
 * @param locator
 */
 public void waitForElementToBePresent(final By locator,
final WebDriver driver) {
 new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.presenceOfElementLocated(locator));
 }

 /**

Making the move to automation testing with Appium

133 www.kobiton.com www.kobiton.com

 * To wait for element (By) to be visible
 *
 * @param driver
 * @param locator
 */
 public void waitForElementToBeVisible(final By locator,
final WebDriver driver) {
 new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.visibilityOfElementLocated(locator)
);
 }

 /**
 * To wait for element to be visible
 *
 * @param driver
 * @param element
 */
 public void waitForElementToBeVisible(final WebElement
element, final WebDriver driver) {
 long s = System.currentTimeMillis();
 new WebDriverWait(driver,
this.explicitWaitDefault).until(ExpectedConditions.visibility
Of(element));
 }

 /**
 * To wait for element to be visible for given amount of
time
 *
 * @param element
 * @param driver
 * @param time
 */
 public void waitForElementToBeVisible(final IOSElement
element, final WebDriver driver, int time) {
 long s = System.currentTimeMillis();
 new WebDriverWait(driver,
time).until(ExpectedConditions.visibilityOf(element));
 }

Making the move to automation testing with Appium

134 www.kobiton.com www.kobiton.com

 public void waitForElementsToBeInvisible(final
List<WebElement> elements, final WebDriver driver) {
 final long s = System.currentTimeMillis();
 new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.invisibilityOfAllElements(elements)
);
 }

 public void waitForElementToBeNotPresent(final By
element, WebDriver driver) {
 long s = System.currentTimeMillis();
 new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.not(ExpectedConditions.presenceOfAl
lElementsLocatedBy(element)));
 }

 public void waitUntilNestedElementPresent(WebElement
element, By locator, WebDriver driver) {
 new WebDriverWait(driver, explicitWaitDefault)

.until(ExpectedConditions.presenceOfNestedElementLocatedBy(el
ement, locator));
 }
}

● Now add PropertyUtils Class under utils directory, which will be

responsible to get the property values from
resources/configuration.properties file.

PropertyUtils.java

package utils;

import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;

/**

Making the move to automation testing with Appium

135 www.kobiton.com www.kobiton.com

 * This class is used to get the configuration properties
from the .properties file
 */
public class PropertyUtils {

 private static PropertyUtils INSTANCE = null;
 private final Properties props = new Properties();

 private PropertyUtils() {
 this.loadProperties("configuration.properties");
 this.props.putAll(System.getProperties());
 }

 private static PropertyUtils getInstance() {
 if (PropertyUtils.INSTANCE == null) {
 PropertyUtils.INSTANCE = new PropertyUtils();
 }
 return PropertyUtils.INSTANCE;
 }

 /**
 * This method can read Property value for any given key
 *
 * @param key
 * @return
 */
 public static String getProperty(final String key) {
 return
PropertyUtils.getInstance().props.getProperty(key);
 }

 /**
 * This method will read any integer property value
 *
 * @param key
 * @param defaultValue
 * @return
 */
 public static int getIntegerProperty(final String key,
final int defaultValue) {

Making the move to automation testing with Appium

136 www.kobiton.com www.kobiton.com

 int integerValue = 0;
 final String value =
PropertyUtils.getInstance().props.getProperty(key);
 if (value == null) {
 return defaultValue;
 }
 integerValue = Integer.parseInt(value);
 return integerValue;
 }

 /**
 * If key couldn't be found then it will return default
value
 *
 * @param key
 * @param defaultValue
 * @return
 */
 public static String getProperty(final String key, final
String defaultValue) {
 return
PropertyUtils.getInstance().props.getProperty(key,
defaultValue);
 }

 /**
 * This method will load properties file in Properties
object
 *
 * @param path
 */
 public void loadProperties(final String path) {
 InputStream inputStream = null;
 try {
 inputStream =
ClassLoader.getSystemResourceAsStream(path);
 System.out.println(inputStream);
 if (inputStream != null) {
 this.props.load(inputStream);
 } else {

Making the move to automation testing with Appium

137 www.kobiton.com www.kobiton.com

 throw new
UnableToLoadPropertiesException("property file '" + path + "'
not found in the classpath");
 }
 } catch (final Exception e) {
 e.printStackTrace();
 } finally {
 try {
 inputStream.close();
 } catch (final IOException e) {
 e.printStackTrace();
 }
 }
 return;
 }

 /**
 * @return Properties
 */
 public static Properties getProps() {
 return PropertyUtils.getInstance().props;
 }

}

class UnableToLoadPropertiesException extends
RuntimeException {

 UnableToLoadPropertiesException(final String s) {
 super(s);
 }

 public UnableToLoadPropertiesException(final String
string, final Exception ex) {
 super(string, ex);
 }
}

Making the move to automation testing with Appium

138 www.kobiton.com www.kobiton.com

12) Now the most important step is to create our BaseTestCase class and include
the logic of WebDriver creation which would be the responsible to manage
the WebDriver object throughout the automation project.

● Create a BaseTestCase class file under the testcases package.

● Add TestNG(Test Framework for Java) default methods such as
@BeforeSuite, @BeforeClass, @BeforeTest, @AfterClass and
@AfterTest methods.

The @BeforeMethod will be executed every time before test case
starts - Let’s look at some simple code regarding its usage.

public class TestCases {

 @BeforeMethod
 public void setUp() {
 System.out.println("Before Method executed..!");
 }

 @Test
 public void test() {
 System.out.println("Test");
 }

 @AfterMethod
 public void tearDown() {
 System.out.println("After Method executed..!");
 }
}

It’s pretty straight-forward code - the @Test method is the actual
testing method you will use for your test cases.
@BeforeMethod will be executed before the execution of your @test
method and likewise @AfterMethod will be executed after the test
execution everytime. It does not matter if you are calling these
methods or not.

So when you execute the above test by selecting the test method >
Right Click > Run ‘test()’ it will execute the setUp() method before test
executes → test() method → tearDown() method after the test
executes.

Making the move to automation testing with Appium

139 www.kobiton.com www.kobiton.com

Have a look at this screenshot to see how to execute the test case and
refer to the second screenshot for the output:

Figure-15: Execute the TestNG test..

Figure-16: Execution of Simple Program.

Making the move to automation testing with Appium

140 www.kobiton.com www.kobiton.com

You can learn more about TestNG Annotations here:
https://www.tutorialspoint.com/testng/testng_basic_annotations.ht
m

● The idea is to put the code for creation of the WebDriver object inside
the @BeforeMethod, because we want the webdriver object in place
before starting the test case(method).

@BeforeMethod
public void setUpAppium() throws MalformedURLException {
 DesiredCapabilities capabilities = new
DesiredCapabilities();
 setDesiredCapabilitiesForAndroid(capabilities);
 driver = new AppiumDriver(new URL(APPIUM_SERVER_URL),
capabilities);
}

/**
 * It will set the DesiredCapabilities for the local
execution
 *
 * @param desiredCapabilities
 */
private void
setDesiredCapabilitiesForAndroid(DesiredCapabilities
desiredCapabilities) {
String PLATFORM_NAME = PropertyUtils.getProperty("android.platform");
String PLATFORM_VERSION = PropertyUtils.getProperty("android.platform.version");
 String APP_NAME = PropertyUtils.getProperty("android.app.name");
String APP_RELATIVE_PATH = PropertyUtils.getProperty("android.app.location") + APP_NAME;
 String APP_PATH = getAbsolutePath(APP_RELATIVE_PATH);
String DEVICE_NAME = PropertyUtils.getProperty("android.device.name");
String APP_PACKAGE_NAME = PropertyUtils.getProperty("android.app.packageName");
String APP_ACTIVITY_NAME = PropertyUtils.getProperty("android.app.activityName");
String APP_FULL_RESET = PropertyUtils.getProperty("android.app.full.reset");
String APP_NO_RESET = PropertyUtils.getProperty("android.app.no.reset");

desiredCapabilities.setCapability(MobileCapabilityType.AUTOMATION_NAME, "uiautomator2");

Making the move to automation testing with Appium

141 www.kobiton.com www.kobiton.com

desiredCapabilities.setCapability(MobileCapabilityType.DEVICE_NAME, DEVICE_NAME);
desiredCapabilities.setCapability(MobileCapabilityType.PLATFORM_NAME, PLATFORM_NAME);
desiredCapabilities.setCapability(MobileCapabilityType.PLATFORM_VERSION, PLATFORM_VERSION);
desiredCapabilities.setCapability(MobileCapabilityType.APP, APP_PATH);
desiredCapabilities.setCapability(AndroidMobileCapabilityType.APP_PACKAGE, APP_PACKAGE_NAME);
desiredCapabilities.setCapability(AndroidMobileCapabilityType.APP_ACTIVITY, APP_ACTIVITY_NAME);
desiredCapabilities.setCapability(MobileCapabilityType.FULL_RESET, APP_FULL_RESET);
desiredCapabilities.setCapability(MobileCapabilityType.NO_RESET, APP_NO_RESET);
desiredCapabilities.setCapability(AndroidMobileCapabilityType.AUTO_GRANT_PERMISSIONS, true);
}

// To get Absolute Path from Relative Path
private static String getAbsolutePath(String
appRelativePath){
 File file = new File(appRelativePath);
 return file.getAbsolutePath();
}

/**
* This will quite the android driver instance
*/
private void quitDriver() {
 try {
 this.driver.quit();
 } catch (Exception e) {
 e.printStackTrace();
 }
}

This code illustrates how you can leverage the @BeforeMethod and
@AfterMethod to leverage WebDriver object creation and deletion.

Every Test Case class file will extend this BaseTest Class file, so all the
methods in the BaseTest class file are available to your test cases. You just
have to focus on Test methods creation on TestCases.java file.

13) Add a BasePO Class under the pageobject package.

● BasePO is the class containing the PageFactory method.

Making the move to automation testing with Appium

142 www.kobiton.com www.kobiton.com

● What is Page Factory?:
○ It is an inbuilt Page Object Model concept for Selenium

WebDriver and it is used to initialize the web elements
(Utilizing the concept of lazy loading: Initialize elements only
when they are needed to be used) that are defined in Page
Objects.

● Below code is responsible to initialize the web elements:

private void initElements() {
 PageFactory.initElements(new AppiumFieldDecorator(driver,
Duration.ofSeconds(IMPLICIT_WAIT)), this);
}

● Now every other Page Object class like LoginPO will extend the

BasePO class, so the constructor of BasePO is always called first and
the initElements method will be called on BasePO constructor. In
simple language initElements will always called first whenever any
Page Object class gets called.

Figure-17: BasePO.

Here you can also see some objects and variables defined.
IMPLICIT_WAIT is getting the values defined in properties file of
java which will be stored under resources/ dir.

Making the move to automation testing with Appium

143 www.kobiton.com www.kobiton.com

● In the Page Object class you need to define the element’s locators
using the below approach:

For iOS:

@iOSFindBy(xpath = “//XCUIElementTypeTextField”)
IOSElement emailTextField;

For Android:

@AndroidFindBy(xpath =
"//android.widget.TextView[@text='Login Screen']")
AndroidElement loginScreenTextView;

● In this example we will work with the sample Android application and

we will use the UiAutomatorViewer inspection tool as it is a speedy
way to get the element’s locator.

Here we get the locator for Login Screen Textview:

Figure-18: UiAutomatorViewer for Android Application.

Making the move to automation testing with Appium

144 www.kobiton.com www.kobiton.com

● And you can create methods in the Page Object class(like in LoginPO)
for the element locators for example if you want to Tap on Login
TextView then you can create method such as
tapOnLoginScreenTextView().

HomeScreenPO.java

package pageobject;
import io.appium.java_client.AppiumDriver;
import io.appium.java_client.android.AndroidElement;
import io.appium.java_client.pagefactory.AndroidFindBy;

public class HomeScreenPO extends BasePO {

 public HomeScreenPO(AppiumDriver driver) {
 super(driver);
 }

 @AndroidFindBy(xpath =
"//android.widget.TextView[@text='Login Screen']")
 AndroidElement loginScreenTextView;

 /**
 * This method will click on Login Screen textview.
 */
 public void tapOnLoginScreenTextView(){
 loginScreenTextView.click();
 }
}

Making the move to automation testing with Appium

145 www.kobiton.com www.kobiton.com

Figure-19: HomeScreenPO.

14) Now that we have created our first Page Object class and added our first

locator into it, we are ready to create a very basic simple test on TestCase

15) Before creating the test case you need to provide the correct path to the

application. You can either:

1) Provide the application locally in the code.

desiredCapabilities.setCapability(MobileCapabilityType.APP
, "path/to/.apk or .ipa(or .app) file");

2) Provide the URL of the application.

desiredCapabilities.setCapability(MobileCapabilityType.APP
, "https://github.com/cloudgrey-io/the-
app/releases/download/v1.7.0/TheApp-v1.7.0.apk");

Figure-20: Local .apk file.

Making the move to automation testing with Appium

146 www.kobiton.com www.kobiton.com

 In our example we will use the local .apk file.

16) Now finally it’s time to create the TestCase java file under the testcases

package and it should extend the BaseTest java file which controls the
webdriver creation before the test starts and deletion at the end of test
execution. So you don't have to take care of that in the TestCase file.

NOTE: Before executing the Test Case make sure Appium server is running on
http://127.0.0.1:4723/wd/hub

TestCases.java

public class TestCases extends BaseTest{
 @Test
 public void test() {
 HomeScreenPO homeScreenPO = new HomeScreenPO(driver);
 homeScreenPO.tapOnLoginScreenTextView();
 }
 @BeforeTest
 @Override
 public void setUpPage() {}
}

As you can see here, our test case is not concerned with how to locate the element
and how to perform the action. That is taken care of by our homeScreenPO object.
Our test case can focus on the business logic or what we are actually testing.

If the element location changes, you can update the homeScreenPO object and your
test case remains unaffected.

Execute the above test by selecting the test method > Right Click > Run ‘test()’

Making the move to automation testing with Appium

147 www.kobiton.com www.kobiton.com

Figure-21: Test Case successful execution.

If you can execute the test case successfully then you will get the above screenshot.

You can get the code of above explained framework from our github project.

Phew! That was a ride! Right now you may be thinking that was a lot of work to
create a simple test case - but that simple test case is misleading. You’ve done all the
groundwork - adding more test cases reusing those elements are much quicker.

Fixing the locator when the application changes
Now the question is how can you benefit from all of this work you just did? Think
about your next release when the element locator of the application changes.

Thanks to structuring your code properly, changes to elements just need to be
relfected in the PageObject class. As easy as 1-2-3:

1) Open the particular page object class
Let say the locator of Login TextView changed in a new iteration(version) of
the application and Login TextView is part of the Home Screen so you need to
move to HomeScreenPO.java file.

Making the move to automation testing with Appium

148 www.kobiton.com www.kobiton.com

2) Get the new locator
Using Appium Inspector, UiAutomator (Android) or Accessibility Inspector
(iOS) you can get the Locator. So move to the particular screen on the
application where the element is located and fetch the correct locator.

Figure-22: Android Application Locator Change.

3) Change the locator
After getting the right locator you just need to replace the old and incorrect
locator. In HomeScreenPO.java file you just need to replace the old locator
with the new locator.

@AndroidFindBy(xpath =
"//android.widget.Button[@text='Login Screen']")
AndroidElement loginScreenTextView;

That’s it! As you can see we just need to change the locator in the Page Object class
and everything works normally again - that is the beauty of using this framework! If
you are not using the framework then you might need to change the locator from
every affected place in code, which is not advisable and can also break something
else.

Making the move to automation testing with Appium

149 www.kobiton.com www.kobiton.com

Structuring your test cases like this will make for a far more maintainable test
automation suite. Learning the rigors to do it following this design pattern will
benefit you and your organization for years to come!

Making the move to automation testing with Appium

150 www.kobiton.com www.kobiton.com

Chapter-8: Test Synchronization
In the last chapter we explored the Page Object Model in some detail. If you recall,
we touched on the wait method and its significance and we promised to get back to
it. So in this chapter we will understand how wait (or Synchronization) performs a
vital role in Automation.

If two or more components are working together in parallel at the same pace or rate,
synchronization comes into play.

We see it in almost every application whenever the screen changes it takes a few
milliseconds (or seconds) to load, and if you do not manage the proper
synchronization in your code then you might face the dreaded
“ElementNotVisibleException” or “NoSuchElementException” exceptions. This is
because the screen hasn’t finished loading and is not synchronized with your test
code. That is, your test code is over eager and starts trying to perform an action on
an element that hasn’t been loaded yet. To avoid this we need to implement proper
synchronization in our automation script.

We can categorize synchronization in two types:

1) Unconditional,
2) Conditional.

Now let’s discuss each of them.

1) Unconditional synchronization
Unconditional Synchronization is also known as Static Synchronization or Static
Wait.
As the name suggests, it specifies a particular fixed (static) time to wait before
starting the execution. Here Appium(or any program) will wait the specified
amount of time and then it will resume the execution.

The standard example of Unconditional Synchronization is below:

try {
 Thread.sleep(1000);
} catch (InterruptedException e) {
 e.printStackTrace();
}

Making the move to automation testing with Appium

151 www.kobiton.com www.kobiton.com

Here the Thread.sleep(1000) function would take 1000 ms to execute.
Key to note is that this wait will be absolute, even if the underlying condition you
were waiting on has been met. For example, you may put in a wait for 3 seconds
waiting for the screen to load. Even if that screen loads in 2 seconds, the system
will still wait for the additional second. The converse is also true - Sometimes the
wait finishes before the underlying operation and execution proceeds. In test
automation, for example, limited network connectivity may slow the mobile
application response time and a screen change may now take 5 seconds while
the script only waits 3 seconds. Once again, you’ll face
“ElementNotVisibleException” or “NoSuchElementException” exceptions.

So unconditional synchronization or static wait is not the preferred way to deal
with dynamic responses.

However it is a viable strategy to use it when you are working with some 3rd
party interfaces and where you can not identify the underlying condition you
need to wait on OR you are sure about the response time.

2) Conditional synchronization
Conditional synchronization depends on some underlying condition. So in
addition to a specified absolute time to wait, the condition is also passed into the
method. Here the script(or program) will resume execution as soon as the
condition is met - or, in the event the condition isn’t met, it will resume after the
specified time.

Appium (or Selenium) provides 3 (mainly 2) types of conditional synchronization.

1) Implicit wait
2) Explicit wait
3) Fluent wait

1) Implicit wait
Implicit wait tells the Appium’s webdriver object to poll the DOM for the
specified amount of time while trying to find the element before throwing an
“ElementNotVisibleException” or “NoSuchElementException” exceptions.

The big advantage of using Implicit wait is it’s lifespan. As we apply Implicit
wait on the Webdriver object, it will be valid for the webdriver object’s
lifespan.

Making the move to automation testing with Appium

152 www.kobiton.com www.kobiton.com

Below is the code to apply the Implicit wait of 10 seconds on the Webdriver
object.

// Define AppiumDriver(WebDriver)
AppiumDriver driver = new AppiumDriver(new
URL(APPIUM_SERVER_URL), capabilities);

// Set Implicit wait upon AppiumDriver(WebDriver)
driver.manage().timeouts().implicitlyWait(10,
TimeUnit.SECONDS);

NOTE: Ideally you should set the implicit wait as soon as you initialize the
WebDriver.

Also you can use other Time Units such as
TimeUnit.NANOSECONDS
TimeUnit.MICROSECONDS
TimeUnit.MILLISECONDS

Please remember that Implicit wait works with only
driver.findElement(...) and driver.findElements(...)
methods - it won’t work for other methods.

Let’s look at a simple example for better understanding.
You want to click on the Login button on the home screen but the home
screen itself takes some to appear when the Appium script runs.

So ideally you need to specify a condition that Appium should locate the
Login Button element(on the home screen) within 10 seconds after starting
the script and if the element is not present (or the home screen has not
appeared) after 10 seconds, only then throw Exceptions.

You can write the following statement after writing the above (webdriver
initialization and set implicit wait of 10 sec.) code:

// Click on Login Button from Home screen.
driver.findElement(By.id("login")).click();

You will notice that we don’t need to specify anything else to the code as we
already added the 10 seconds implicit wait to the AppiumDriver object. Now

Making the move to automation testing with Appium

153 www.kobiton.com www.kobiton.com

it will be polling the DOM for 10 seconds until the Login Button is found and
as soon as the button is found, it will be clicked.

However there are a few limitations to using Implicit wait:

1) As you know it’s only useful for driver.findElement(...) and
driver.findElements(...) methods - we can’t check other
conditions. For example if you want to wait until a particular button is
displayed on the screen as well as on the DOM, you can’t check it with
Implicit wait. There is a chance that the particular button is in the
DOM but it’s hidden or it’s not visible on the screen, so in that case
Implicit wait executes successfully but would not give us the accurate
answer about the element’s visibility.

2) There is a chance that the time for the implicit wait isn’t enough. For

example as we mentioned earlier where we’re waiting 5 seconds but
limited network connectivity causes the screen to take 10 seconds to
load. In that case Implicit wait will break.

 These limitations are resolved by the Explicit wait.

2) Explicit wait
Explicit waits are the best synchronization methods for dynamic responses in
the application.

Explicit wait informs the AppiumDriver(WebDriver) to wait

1) Until the specified condition is met OR
2) The specified time has elapsed

...before throwing the “ElementNotVisibleException” or
“NoSuchElementException” exceptions.

And if the AppiumDriver is able to meet the condition within the specified
amount of time then the code will get executed.

In explicit wait we need to tell the WebDriver object to wait for a specific
condition using the ExpectedConditions class. So, actually this wait is
specific to a particular single element rather than the whole WebDriver
object (unlike implicit wait).

Making the move to automation testing with Appium

154 www.kobiton.com www.kobiton.com

The WebDriverWait class will call the ExpectedCondition every 500
milliseconds by default until the output is True. So if you have given 10
seconds of timeout, ExpectedCondition would be called 20 times at 500
milliseconds intervals to check if the condition has been met.

Now let’s take one simple example to understand the use of Explicit wait.
In almost all mobile applications when you perform a Login it takes some
time to load the dashboard or home screen and its elements. For example
purposes, let’s say there is a menu button on the dashboard screen. You can
use an Explicit wait with the condition of wait till menu button element is
visible:
(ExpectedConditions.visibilityOf(<menu_button_element>)) on
Dashboard screen.

WebDriverWait webDriverWait = new WebDriverWait(driver,
30);
webDriverWait.until(ExpectedConditions.visibilityOfElement
Located(By.id("menubutton")));

When we initialize new object of WebDriverWait class, we need to pass 2
parameters:

1) WebDriver object.
2) Number of seconds

After creation of the WebDriver object you need to call the until() method
and need to pass the ExpectedConditions.<condition_name>()
inside it.

There are many conditions are defined in ExpectedConditions class, but we can
list down a few popular ones3:

Condition Name Purpose

elementToBeClickable(By locator)

Example:

An expectation for checking an
element is visible and enabled such
that you can click it. In this method

3 Official Selenium API docs on the Github project.

Making the move to automation testing with Appium

155 www.kobiton.com www.kobiton.com

ExpectedConditions.elementToBeCli
ckable(By.id(“loginButton”));

you need to pass the object of By
class.

elementToBeClickable(WebElement
element)

Example:
ExpectedConditions.elementToBeCli
ckable(driver.findElement(By.id("me
nubutton")));

An expectation for checking an
element is visible and enabled such
that you can click it. In this method
you need to pass the object of
WebElement class.

presenceOfElementLocated(By
locator)

An expectation for checking that an
element is present on the DOM of a
page. This does not necessarily
mean that the element is visible.

visibilityOfElementLocated(By
locator)

An expectation for checking that an
element is either invisible or not
present on the DOM.

elementToBeSelected(WebElement
element)

An expectation for checking if the
given element is selected.

numberOfElementsToBe(By locator,
java.lang.Integer number)

An expectation for checking number
of WebElements with given locator.

titleIs(java.lang.String title) An expectation for checking the title
of a page.
This is not applicable to Appium
Mobile Application.

textToBePresentInElement(WebEle
ment element, java.lang.String text)

An expectation for checking if the
given text is present in the specified
element.

You can find more details about ExpectedConditions class and it’s
methods on Official Selenium docs, but remember not all are applicable to
Mobile Applications, however all the methods are valid for Mobile Web
Browser(Chrome/Safari):

3) Fluent wait
Fluent wait is part of WebDriverWait, The only difference is it’s more
configurable than Explicit wait.

Making the move to automation testing with Appium

156 www.kobiton.com www.kobiton.com

You can configure the:

1) Poll frequency: The is the Time Interval to check whether the
expected condition for the webelement is met or not. So if poll
frequency is 1 second and total wait time is 10 seconds, fluent will
check if the condition is met or not at every 1 second for a maximum
of 10 times.

2) Ignore the Exception: If you want to ignore a specific exception such

as NoSuchElementExceptions while searching for an element.

3) Maximum wait time: The total maximum amount of time to wait for
a condition is met before throwing an exception.

Below is the example of Fluent wait:

FluentWait<AppiumDriver> webDriverWait = new
FluentWait<AppiumDriver>(driver);

webDriverWait.pollingEvery(Duration.ofSeconds(1));
webDriverWait.ignoring(NoSuchElementException.class);
webDriverWait.withTimeout(Duration.ofSeconds(10));

Which types of Wait you should use When?

Wait Type Purpose

Implicit When you need to apply common wait without any condition.

Explicit When you need to test expected condition for an element.

Fluent When you need to test expected condition for an element after a
specific amount of time like every x seconds/minutes.

Synchronization in our automation framework
(WaitUtils.java)

In Chapter-7, we defined the Wait Utility in order to handle synchronization in
our tests. In this section we will look into the usage of it.

Making the move to automation testing with Appium

157 www.kobiton.com www.kobiton.com

We created the WaitUtils object at 2 places to leverage the synchronization at
Page Object or Test Class level:
1) BasePO.java

Figure-1:WaitUtils object in BasePO.

2) BaseTest.java

Figure-2: WaitUtils object in BaseTest.

You can see there are many wait methods(of Implicit and Explicit wait) are
defined in WaitUtils.java file, Now let’s create a simple example to use WaitUtils
using the WaitUtils object at the Page Object and Test Class level.

WaitUtils.java

public class WaitUtils {
…….
…….
 public void staticWait(final long millis) {
 try {
 TimeUnit.MILLISECONDS.sleep(millis);
 } catch (final InterruptedException e) {
 }
 }
…….
…….
}

Making the move to automation testing with Appium

158 www.kobiton.com www.kobiton.com

1) WaitUtils usage on TestCases.java
Here the script is using the staticWait(long milliSeconds) method, so
after tapping on the Login Screen Text View, the script will pause execution for 2
seconds.

public class TestCases extends BaseTest{

 @Test
 public void test() {
 HomeScreenPO homeScreenPO = new
HomeScreenPO(driver);
 homeScreenPO.tapOnLoginScreenTextView();
 waitUtils.staticWait(2000);
 }
…….
…….
}

2) WaitUtils usage on .java
Here the script is using the same staticWait(long milliSeconds) method
of WaitUtils.java class. In HomeScreenPO.java we have defined the
tapOnLoginScreenTextView() method which clicks on the Login TextView -
after tapping on Login Screen Text View, execution would pause for 2 seconds.

public class HomeScreenPO extends BasePO {
…….
…….
 /**
 * This method will click on Login Screen textview.
 */
 public void tapOnLoginScreenTextView(){
 loginScreenTextView.click();
 waitUtils.staticWait(3000);
 }
…….
…….
}

So both of them doing the same work but at different places!

Making the move to automation testing with Appium

159 www.kobiton.com www.kobiton.com

Many beginner Appium developers sometimes wonder when to wait and for how
long. Using wait in your scripts will become intuitive the more you use them and the
more you run into certain conditions. And don’t worry, you’ll be greeted with
exceptions when you forget to include the proper wait!

Making the move to automation testing with Appium

160 www.kobiton.com www.kobiton.com

Chapter-9: Parallel Test
Execution on Simulators and
Emulators.
Up until now we’ve learned all the Appium basics, including how to extract elements
and executing the tests on devices and emulators.

Although automation is great, in today’s fast moving world there is a constant
demand to execute tests faster and on more devices. So the idea of executing these
tests in a linear fashion (ie. one at a time) seems somewhat antiquated.

In this chapter we are going to discuss how you can leverage parallel test execution
on simulators and emulators to test more, faster.

We will be using Java + TestNG, a great combination in the world of Automation
Testing allowing us to run tests on parallel.

Before going too deep into parallelization details we will go through the basics of
TestNG.

TestNG
TestNG is a open source testing framework written in Java, featuring:

● Annotations support, which reduces complexity at the class level.

● It is written in Java and has clean Object Oriented features.

● All tests can be run from one place via the testng.xml file that specifies the

tests to be executed.

● It has a grouping feature so you can group the test cases and can run them
group wise.

● Supports multi threading and parallel testing at the 1) method(test), 2) class

and 3) test suite level.

● It also supports Data Providers so code duplication can be reduced.

Making the move to automation testing with Appium

161 www.kobiton.com www.kobiton.com

For example, if you want to execute the same test cases having different data
each time, you don’t need to create separate test cases with different data.

In this chapter we will focus on the Parallel testing feature.

Let’s take a refresher on how you can execute test cases from a Test Class file in
IntelliJ Idea. You will recall that you just need to select the Test Method Name >
Right click on it > Run.

Figure-1: Run the test case.

Now before jumping into parallel testing, let’s revisit the following simple code for
iOS we used in an earlier chapter. This is the code we will be using as an example for
parallel execution:

import io.appium.java_client.ios.IOSDriver;
import io.appium.java_client.ios.IOSElement;
import org.openqa.selenium.By;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.testng.Assert;
import org.testng.annotations.BeforeTest;

Making the move to automation testing with Appium

162 www.kobiton.com www.kobiton.com

import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class IOSTestCases {
 public IOSDriver<IOSElement> driver;

 @BeforeTest
 public void setUp() throws MalformedURLException {
 String appiumServerURL =
"http://127.0.0.1:4723/wd/hub";

 DesiredCapabilities dc = new
DesiredCapabilities();
 dc.setCapability("platformName", "iOS");
 dc.setCapability("platformVersion", "11.4");
 dc.setCapability("app",
"/Users/pratik/Downloads/FirstAutomationTest/src/test/reso
urces/DemoApp-iPhoneSimulator.app");
 dc.setCapability("deviceName", "iPhone X");

 driver = new IOSDriver<IOSElement>(new
URL(appiumServerURL), dc);
 }

 @Test
 public void sampleTestCase() throws
InterruptedException {
 int a = 5;
 int b = 10;

 driver.findElement(By.id("IntegerA")).sendKeys(a +
"");
 driver.findElement(By.id("IntegerB")).sendKeys(b +
"");

driver.findElement(By.id("ComputeSumButton")).click();
 String answer =
driver.findElement(By.id("Answer")).getText();
 Assert.assertEquals(answer, a + b + "", "Expected

Making the move to automation testing with Appium

163 www.kobiton.com www.kobiton.com

and Actual Result didn't match!");
 }
}

After putting the above test script into a IntelliJ java project, we can execute the test
cases. But right now we will use the testng.xml method for execution.

Creation of testng.xml
Unfortunately, by default testng.xml is not available to the project so we need to
create it. But you can do it in 2 ways:

1) Manually create testng.xml
In this approach, You have to create the testng.xml file manually in project.

You can
create/configure the testng.xml file by many ways such as:

a) Specifying the Package name, to execute tests from whole package.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">
 <test verbose="2" preserve-order="true"
 name="/Volumes/Disk2/AppiumBook/Chapter9-Test
Execution on Parallel simulators and emulators">
 <packages>
 <package name="testcases" />
 </packages>
 </test>
</suite>

b) Specifying the Test Class name, to execute tests for particular Test

Class.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">
 <test verbose="2" preserve-order="true"
 name="/Volumes/Disk2/AppiumBook/Chapter9-Test
Execution on Parallel simulators and emulators">
 <classes>
 <class name="testcases.IOSTestCases">

Making the move to automation testing with Appium

164 www.kobiton.com www.kobiton.com

 </class>
 </classes>
 </test>
</suite>

c) Specifying the Test Method name, to execute a particular test case.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">
 <test verbose="2" preserve-order="true"
 name="/Volumes/Disk2/AppiumBook/Chapter9-Test
Execution on Parallel simulators and emulators">
 <classes>
 <class name="testcases.IOSTestCases">
 <methods>
 <include name="sampleTestCase"/>
 </methods>
 </class>
 </classes>
 </test>
</suite>

d) Specifying the specific groups to be included or excluded. Here you

need to set the group to Test case first like:

@Test(groups = {"sample"})
public void sampleTestCase() {
….
….
}

And after that you can create a testng.xml file to run the test cases for
a sample group.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">
 <test verbose="2" preserve-order="true"
 name="/Volumes/Disk2/AppiumBook/Chapter9-Test
Execution on Parallel simulators and emulators">

Making the move to automation testing with Appium

165 www.kobiton.com www.kobiton.com

 <groups>
 <run>
 <include name="sample"/>
 </run>
 </groups>

 <classes>
 <class name="testcases.IOSTestCases"/>
 </classes>
 </test>
</suite>

That may seem a little confusing right now since you don’t yet know the

details of
 what all of that does. Hang in there, it’ll start making sense in a bit.

2) Manually create testng.xml
This is the recommended approach in IntelliJ Idea, as you can create
testng.xml using an IntelliJ Idea plugin. For other IDEs, consult their plug-in
marketplace or ecosystem.

Creating it via IntelliJ involves the following steps:

● Move to IntelliJ Idea project and open Preferences.

Figure-2: Open Preferences.

Making the move to automation testing with Appium

166 www.kobiton.com www.kobiton.com

● Now move to plugin section and click on Browse repositories… which
will takes you to the Plugins dialog.

Figure-3: IntelliJ Plugins.

● Search for “Create testng” type string and you will find the plugin

named “Create TestNG XML”

Making the move to automation testing with Appium

167 www.kobiton.com www.kobiton.com

Figure-4: Create TestNG XML plugin.

● After installing the plugin, you need to restart IntelliJ IDEA.

Figure-5: Restart IntelliJ IDEA after installing plugin.

● Now after restarting the IntelliJ IDEA, you are able to generate a

TestNG xml file.

Making the move to automation testing with Appium

168 www.kobiton.com www.kobiton.com

Figure-5: Create TestNG XML.

● In a fraction of a second testng.xml will be created and you will get
the below confirmation modal dialog.

Figure-6: TestNG created successfully.

● By default testng.xml will be created under the project root directory,
so it won’t be identified by the java compiler at run/compile time. So
you need to move it to test/resources.

Making the move to automation testing with Appium

169 www.kobiton.com www.kobiton.com

Figure-7: testng.xml under test/resources directory.

So as you can see in above screenshot, there are some pre-defined
XML tags present. Here by default class tag has
name=”testcases.IOSTestCases” attribute, which means TestNG will
execute all test cases under this test class only. And as we have only
one test case(sampleTestCase) is defined under
testcases.IOSTestCases it will run/execute only one test case.

You can also change the testng.xml and make it run at the package,
class, method and group level.

How to run the testng.xml?
Well, the answer is just a 2 step process:

1) Right click on testng.xml
2) Select Run

And that’s it, your tests under the IOSTestCases will start the execution sequentially.

Making the move to automation testing with Appium

170 www.kobiton.com www.kobiton.com

Figure-8: Run the testng.xml.

Parallel execution of automation tests is a really important concept - by executing
the tests in parallel we can save a lot of time.

1) Parallel execution of tests on iOS simulators

Our goal is to execute a single test case (sampleTestCase) written in
IOSTestCase.java on 3 iOS Simulators(iPhone 7, iPhone 8 and iPhone X) in
parallel.

In order to achieve that we need to understand 2 important concepts:
1) We need to manage the Appium Server from Code:

Up until now we were using the Appium Desktop Application to start the
Appium server. Normally, one Appium server is bound to one Appium Session
(or you can say to one device/simulator), but now as we need to run the test
case on 3 iOS simulators at the same time, we need 3 Appium servers
running on three different ports. Now you can’t rely on the Appium Desktop
Application as it will be able to run only one Appium Server.

So the best option left to us is to create and run 3 Appium servers at runtime,
and using Java you can easily create the Runtime Appium Server by
mentioning the particular port. In our case we will need 3 different ports to
start 3 different Appium Servers(or Sessions).

Below is the code which will start and stop the Appium server for port 4725.

// Create AppiumDriverLocalService object with specifying the
port.
AppiumDriverLocalService service = new

Making the move to automation testing with Appium

171 www.kobiton.com www.kobiton.com

AppiumServiceBuilder().usingPort(4725).build();
// To start Appium server.
service.start();

// To End Appium server.
service.start();

2) We need to use parameters in Test Class and testng.xml

We need to start 3 Appium Servers on 3 different ports, and each device
should be assigned to a single Appium Server with a unique WDA port.

What is a WDA Port?
It’s nothing but used to forward traffic from the Mac host to the iOS
Simulator to real ios devices over USB

This table may make it more clear:

No. Appium Server Port Device Name (Simulator) WDA Local Port

1 4725 iPhone 7 8100

2 4726 iPhone 8 8200

3 4727 iPhone X 8300

Now we need to pass these values from testng.xml to our Test Class before
all initialization of the WebDriver takes place. And we will use the TestNG
@Parameters annotation for that.

Please consider the below example to understand how @Parameter at the
Test Class level and <parameter> at testng.xml level works.

IOSTestCases.java

@Parameters({"wda", "deviceName", "port"})
@BeforeTest
public void setUp(long wda, String deviceName, String port){

AppiumDriverLocalService service = new
AppiumServiceBuilder().usingPort(Integer.valueOf(port)).build
();

Making the move to automation testing with Appium

172 www.kobiton.com www.kobiton.com

service.start();

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(IOSMobileCapabilityType.WDA_LOCAL_PORT,
wda);
dc.setCapability(MobileCapabilityType.DEVICE_NAME,
deviceName);
….
….
}

testng.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">
 <test name="test1">
 <parameter name="wda" value="8100"/>
 <parameter name="deviceName" value="iPhone 7"/>
 <parameter name="port" value="4725"/>
 <classes>
 <class name="testcases.IOSTestCases"/>
 </classes>
 </test>
</suite>

In the above example we are passing 3 values from testng.xml to the
IOSTestClass.java:

1) wda: Which will be passed to Desired capabilities
IOSMobileCapabilityType.WDA_LOCAL_PORT

2) deviceName: Which also would be passed to Desired capabilities of

MobileCapabilityType.DEVICE_NAME

3) port: Used to create the Appium server.

Now let’s come to the parallelization part. If you want to run test cases in parallel
then you need to use attributes along with the <suite> tag.

Making the move to automation testing with Appium

173 www.kobiton.com www.kobiton.com

1) parallel: It has a number of possible values such as tests, classes, method
and instances. If you want to run parallelization at <test> then you can use
parallel="tests"

2) thread-count: No of threads to execute in parallel. If you want to execute
5 test cases in parallel then thread-count="5"

<suite name="All Test Suite" parallel="tests" thread-
count="5">

To reach our Goal we need to execute test cases from IOSTestCases.java on
3 iOS simulators in parallel, so below is the testng.xml file we can use:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite" parallel="tests" thread-
count="3">

 <test name="test1">
 <parameter name="wda" value="8100"/>
 <parameter name="deviceName" value="iPhone 7"/>
 <parameter name="port" value="4725"/>
 <classes>
 <class name="testcases.IOSTestCases"/>
 </classes>
 </test>

 <test name="test2">
 <parameter name="wda" value="8200"/>
 <parameter name="deviceName" value="iPhone 8"/>
 <parameter name="port" value="4726"/>
 <classes>
 <class name="testcases.IOSTestCases"/>
 </classes>
 </test>
 <test name="test3">
 <parameter name="wda" value="8300"/>
 <parameter name="deviceName" value="iPhone X"/>
 <parameter name="port" value="4727"/>
 <classes>
 <class name="testcases.IOSTestCases"/>
 </classes>

Making the move to automation testing with Appium

174 www.kobiton.com www.kobiton.com

 </test>

</suite>

After adding this to testng.xml you just need to Right click on it and select Run
option, and you will see the 3 iOS Simulators will open and each of them will
execute test cases in parallel. Great!

We have discussed only one possible way to achieve parallelization. There are
many other ways out there and you can also create your own.

2) Parallel execution of tests on real iOS devices
In the previous section we looked at test execution on iOS Simulators, but what if
you want to execute tests on Real Devices? In the next chapter we will look at
using a cloud testing service like Kobiton, but for now, let’s look at how you may
need to run parallel tests using the real-devices on-hand.

The answer is pretty simple - we just need to pass UDID as a 4th parameter.

Let’s understand this by way of an example. Let’s say we have 2 real iOS Devices
connected to our Mac host and we want to run the test cases on that in parallel.
Please look at the table below for Device capability and Port information.

No. Appium
Server Port

Real
Device
Name

UDID WDA
Local
Port

1 4725 John’s
iPhone

2b6f0cc904d137be2e1730235f5664094b831186 8100

2 4726 iPhone d137be2e12b6f0cc90473031186235f5664094b8 8200

3 4727 iPhone X 137b30235f5664094b831186e22b6f0cc904de17 8300

IOSTestCases.java and testng.xml will look like below.

IOSTestCases.java

@Parameters({"wda", "udid", "deviceName", "port"})
@BeforeTest
public void setUp(long wda, String udid, String deviceName,
String port){

Making the move to automation testing with Appium

175 www.kobiton.com www.kobiton.com

AppiumDriverLocalService service = new
AppiumServiceBuilder().usingPort(Integer.valueOf(port)).build
();
service.start();

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(IOSMobileCapabilityType.WDA_LOCAL_PORT,
wda);
dc.setCapability(MobileCapabilityType.UDID, udid);
dc.setCapability(MobileCapabilityType.DEVICE_NAME,
deviceName);
….
….
}

testng.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite" parallel="tests" thread-
count="2">

 <test name="test1">
 <parameter name="wda" value="8100"/>
 <parameter name="udid"
value="2b6f0cc904d137be2e1730235f5664094b831186"/>
 <parameter name="deviceName" value="John’s
iPhone"/>
 <parameter name="port" value="4725"/>
 <classes>
 <class name="testcases.IOSTestCases"/>
 </classes>
 </test>

 <test name="test2">
 <parameter name="wda" value="8200"/>
 <parameter name="udid"
value="d137be2e12b6f0cc90473031186235f5664094b8"/>
 <parameter name="deviceName" value="iPhone"/>
 <parameter name="port" value="4726"/>
 <classes>

Making the move to automation testing with Appium

176 www.kobiton.com www.kobiton.com

 <class name="testcases.IOSTestCases"/>
 </classes>
 </test>

 <test name="test3">
 <parameter name="wda" value="8300"/>
 <parameter name="udid"
value="137b30235f5664094b831186e22b6f0cc904de17"/>
 <parameter name="deviceName" value="iPhone X"/>
 <parameter name="port" value="4727"/>
 <classes>
 <class name="testcases.IOSTestCases"/>
 </classes>
 </test>

</suite>

3) Parallel execution of tests on Android emulators

Parallel execution of tests on Android emulators is largely the same mechanism
we just explored as with iOS device. The main advantage with parallel execution
on Android is that, unlike with iOS, you don’t need to provide a wda port.

AndroidTestCases.java

@Parameters({"platformVersion", "deviceName", "port"})
@BeforeTest
public void setUp(String platformVersion, String deviceName,
String port) throws MalformedURLException {

AppiumDriverLocalService service = new
AppiumServiceBuilder().usingPort(Integer.valueOf(port)).build
();
service.start();

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
platformVersion);
dc.setCapability(MobileCapabilityType.DEVICE_NAME,
deviceName);
….

Making the move to automation testing with Appium

177 www.kobiton.com www.kobiton.com

….
}

testng.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="Android Test Suite" parallel="tests" thread-
count="2">
 <test name="test1">
 <parameter name="platformVersion" value="8.0"/>
 <parameter name="deviceName" value="emulator-
5554"/>
 <parameter name="port" value="4729"/>
 <classes>
 <class name="testcases.AndroidTestCases"/>
 </classes>
 </test>

 <test name="test2">
 <parameter name="platformVersion" value="9.0"/>
 <parameter name="deviceName" value="emulator-
5556"/>
 <parameter name="port" value="4730"/>
 <classes>
 <class name="testcases.AndroidTestCases"/>
 </classes>
 </test>
</suite>

Everything else remains the same.

4) Parallel execution of tests on real Android devices
You just need to change the device name in testng.xml. Using $ adb devices
you can get the connected real device names.
testng.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

Making the move to automation testing with Appium

178 www.kobiton.com www.kobiton.com

<suite name="Android Test Suite" parallel="tests" thread-
count="2">
 <test name="test1">
 <parameter name="platformVersion" value="7.0"/>
 <parameter name="deviceName"
value="B6AUTSZDYPSOZD7S"/>
 <parameter name="port" value="4739"/>
 <classes>
 <class name="testcases.AndroidTestCases"/>
 </classes>
 </test>
 <test name="test2">
 <parameter name="platformVersion" value="8.0"/>
 <parameter name="deviceName" value="c4e3f3cd"/>
 <parameter name="port" value="4740"/>
 <classes>
 <class name="testcases.AndroidTestCases"/>
 </classes>
 </test>
</suite>

When you execute the above testng.xml you can get output result similar to the
below image.

Figure-9: Parallel execution on Real Android Devices.

Making the move to automation testing with Appium

179 www.kobiton.com www.kobiton.com

You can also find this example on our Github page as well:

As we discussed there are many other ways to achieve parallelization using
TestNG, so using your custom logic you can even execute tests for both iOS and
Android parallelly.

In the next chapter we’ll look at how you can use the Kobiton cloud testing
service to execute your test scripts against real-devices in the cloud.

Making the move to automation testing with Appium

180 www.kobiton.com www.kobiton.com

Chapter-10: Test Execution on
Real Devices Using Kobiton
Up until now, you’ve learned the basics of using Appium and testing against
emulators and simulators. However, for production apps it is imperative to test on
real devices to ensure the behavior is as expected for your end-users. The mobile
ecosystem is particularly fragmented given the wide range of device manufacturers
and different versions of operating systems. The only way of knowing that it really
works on real-devices is to test your app on a wide variety of devices.

It is imperative therefore to introduce real-device testing into your quality process.

The question then becomes “how”? After all, it would seem that working with
simulators/emulators is much simpler than buying physical devices which are
constantly being released. Fortunately, there are services which makes this a breeze.

A Cloud Device Provider provides a set of real devices on the cloud at scale. The main
purpose of any cloud device provider is to provide the testing infrastructure upon
which the test cases will be executed on, so the team is can be focused on producing
the test scripts.

The main advantage to use a cloud device service is that you will always have access
to the latest (and older) set of devices.

Another advantage is that users can see the test execution details such as
screenshots, execution logs, failure log details and even video. And if you have a
geographically dispersed team, everybody has access to the devices and the session
logs.

Popular cloud device providers include Kobiton, Perfecto, Browserstack and
SauceLabs. In this chapter we will look at using Kobiton.

Introduction to Kobiton
Kobiton focuses exclusively on real devices rather than emulators and simulators.
Kobiton uses its own Appium Server so you don’t need to worry about starting your
own Appium server - you focus on the test scripts!

Kobiton provides4:

4 Kobiton Website: https://kobiton.com/real-device-testing/

Making the move to automation testing with Appium

181 www.kobiton.com www.kobiton.com

1) Rich test logs for true Root Cause Analysis
Kobiton provides various analysis and reporting features such as:

● Full video recording.
● Screenshots.
● Capture user interactions.
● System metrics reporting.
● Full device logs.
● Script execution results.

2) Integration with your favorite tools
You can also integrate it with various tools such as:

● JIRA
● Github
● HockeyApp
● Jenkins
● Travis CI
● TeamCity

3) Powerful APIs
Kobiton provides the full support of Appium with major programming
languages such as Java, Python, C#, Node.js, Ruby and PHP and they have
also did partnership with Katalon Studio(A highly acclaimed and innovative
test automation tool).

4) Manual, Automated and Parallel testing supported
It provides support for parallel execution which is necessary for CI/CD process
and also supports:

● On-demand manual testing.
● Automation testing.
● Supports Appium and Selenium.
● Mobile web and cross browser testing.
● UI testing.
● Supports parallel script execution.
● Full DevOps integration.

Now let’s see how easy it is to test your Appium script on real-devices in the
cloud.

Making the move to automation testing with Appium

182 www.kobiton.com www.kobiton.com

Step-by-step guide

1) Visit https://kobiton.com/ and register as a new user.

Figure-1: Kobiton: Registration Page.

2) After the successful registration you will get an email for the confirmation

from the Kobiton so you can confirm it.

Figure-2: Kobiton: Confirmation Email.

Making the move to automation testing with Appium

183 www.kobiton.com www.kobiton.com

3) Now you can access the Kobiton portal by providing valid credentials.

Figure-3: Kobiton: Login Page.

4) As part of the free trial, you get 120 minutes. By completing the survey you

can get an additional 30 minutes of testing.

Figure-4: Select the preferences.

Making the move to automation testing with Appium

184 www.kobiton.com www.kobiton.com

5) Once you click on “Claim your 30 minutes!” you will be redirected to the
dashboard where you can see the devices.

Figure-5: Kobiton: Dashboard.

NOTE: Please make sure the device upon which you want to start execution is
Online (Available for execution) otherwise you will get the exception saying:
org.openqa.selenium.SessionNotCreatedException: No device matching the
desired capabilities. Note that Kobiton provides exclusive/private devices if
needed.

Making the move to automation testing with Appium

185 www.kobiton.com www.kobiton.com

Figure-6: Device Availability.
6) Now on the dashboard page you can choose any device for test execution.

But before you choose the device for execution you need to upload the
mobile application which you want to automate by going into the Apps
section.

Figure-7: Add a new app.

Figure-8: Select the application from finder window.

Making the move to automation testing with Appium

186 www.kobiton.com www.kobiton.com

Figure-9: Uploading the new .apk file

Figure-10: .apk file uploaded.

7) Once the application is uploaded successfully you can get the app id for the
uploaded application because you need to pass this id as value of app key in
Desired Capabilities.

capabilities.setCapability("app", "kobiton-store:22304");

Or you can also select the application in the automation settings dialog, so
that you don’t need to manually write the app value in desired capabilities.

Figure-11: Get Automation snippet.

Making the move to automation testing with Appium

187 www.kobiton.com www.kobiton.com

Figure-12: app capability value

8) After noting down the app value you can move to the Devices section and in
the automation settings you will get the set of the Desired Capabilities (for
every programming language) which you need to use in order to execute the
test case on Kobiton device.

Figure-13: Show automation settings for Device.

Making the move to automation testing with Appium

188 www.kobiton.com www.kobiton.com

Figure-14: Automation Settings for Device.

As we want to execute test cases for a mobile application, you need to select
the ”Hybrid/Native from Apps” option.

Figure-15:Choose Hybrid/Native from Apps.

Now as we have already uploaded the application to Kobiton server, so you
just have to click on “Select App from Apps Repo” button and select the
uploaded app.

Making the move to automation testing with Appium

189 www.kobiton.com www.kobiton.com

Figure-16: Click on Select App from Apps Repo button.

Figure-17: Select uploaded app.

And at last copy the set of Desired Capabilities.

Figure-18: Copy Desired Capabilities.

Making the move to automation testing with Appium

190 www.kobiton.com www.kobiton.com

9) Now all we need to do is paste the desired capabilities to our test script and
run it. And here we are using the same android script which we have gone
through in early chapters.

Figure-19: Paste Desired Capabilities in Test Script.

10) Now when you run the script, you can see the session is created for the

selected Kobiton device.

Figure-20: Kobiton Session is created.

Making the move to automation testing with Appium

191 www.kobiton.com www.kobiton.com

11) Once execution is finished, you are able to analyze the logs, screenshots,
video and even HTTP commands.

Figure-21: Session Overview.

Figure-22: HTTP Commands.

Making the move to automation testing with Appium

192 www.kobiton.com www.kobiton.com

Figure-23: Execution Video.

Figure-24: Execution Logs.

It’s that easy!
You can find the above test code on our github page:

Execute test cases on a Mobile Browser
Kobiton also supports mobile web testing in addition to native apps.

Testing for mobile web is really easy - you just need to select the ”Web” option in
the Automation settings for the device and simply copy the desired capabilities. And

Making the move to automation testing with Appium

193 www.kobiton.com www.kobiton.com

because we’re testing a web application in this case, there is no need to upload an
app.

Figure-25: Automation Settings for Mobile Browser execution.

Moreover, if you want to manually test your mobile application on a Kobiton
device you can easily do that, you just need to select the device click on the
Launch button.

Figure-26: Launch device.

In this manual mode you can control the real device the same as if you had the
device in-hand.

Making the move to automation testing with Appium

194 www.kobiton.com www.kobiton.com

Figure-27: Manual testing on device.

Kobiton offers many features including the ability to combine your own on-
premises devices with the cloud devices. A detailed review of all the Kobiton
capabilities are beyond the scope of this book but if you visit
https://docs.kobiton.com/ you can find lots of additional information and
services offered by Kobiton.

For more information about Automation testing with Kobiton visit:

https://docs.kobiton.com/automation-testing/using-kobiton-for-automation-
testing/

And for Manual testing with Kobiton you can find good documentation here:

https://docs.kobiton.com/manual-testing/overview/

Real-device testing should be a key part of your quality process. Fortunately this
is made easy by cloud device providers. Other providers apart from Kobiton
include Perfecto, Browserstack and Saucelabs.

Making the move to automation testing with Appium

195 www.kobiton.com www.kobiton.com

Chapter-11: Automating
Gestures
Up until now we have looked into basic Appium automation, such as finding and
clicking on a button or typing text into a text field. However, “real world” mobile
applications are more sophisticated and contain many complex UI elements that
require user interactions such as double tap, long press, swipe left/right, pull
up/down and even multi-touch actions.

Appium supports the following gestures:

● Tap on an element.
● Tap on x, y coordinates.
● Press an element for a particular duration.
● Press x, y coordinates for a particular duration.
● Horizontal swipe: Using start and end percentage of the screen height and

width.
● Vertical swipe: Using start and end percentage of the screen height and

width.
● Drag(Swipe) one element to another element.
● Multitouch for an element.

Appium supports these gestures using the TouchActions class.

TouchAction touchAction = new TouchAction(driver);

Some of the supported methods are:5

Method Name Purpose

press(PointOption pressOptions) Press action on the screen.

longPress(LongPressOptions
longPressOptions)

Press and hold the at the center of an
element until the context menu event
has fired.

tap(PointOption tapOptions) Tap on a position.

moveTo(PointOption moveToOptions) Moves current touch to a new position.

5 Official Appium API docs from the github page:

Making the move to automation testing with Appium

196 www.kobiton.com www.kobiton.com

cancel() Cancel this action, if it was partially
completed by the
performsTouchActions.

perform() Perform this chain of actions on the
performsTouchActions.

Before exploring each mentioned action we need to understand the significance
of perform() as it plays a vital role. The Appium client simply records all the
instructions and actions on the client side and stores the intermediate values in a
local data structure. The perform() method is used to send all actions to the
appium server - as soon as perform() is called, the intermediate actions and
instructions are converted to JSON and sent to the appium server, and then the
actual action is being performed. So for any gesture code the last method called
would be perform()

Note: This is a common omission during development, forgetting to call
perform() and wondering why your test isn’t working!

Appium fully supports native applications. So if the application is designed
natively for the platform (iOS or Android), then you can easily find the unique
selectors for automation, but there are case when you use cross-platform
development technologies such as react native, ionic or xamarin framework. In
this instance, sometime elements are not present for a particular screen or even
a whole application.

For example, most games are coded using the Unity3D platform rather than
native coding, so there would not be a single element that can be located by any
tool or even by the appium inspector. However we are not talking about game
automation right now.

The main takeaway here is that if you are not able to get the selector for any
element for any reason then only one survival option remains. Which is to get
the x, y coordinates for that element.

NOTE: Please remember that you can only click on that element using appium.

Now the question is how can you get the x,y coordinate?
● It depends...
● Because you can get the Pointer location in Android but you can not get it in

iOS devices.

Making the move to automation testing with Appium

197 www.kobiton.com www.kobiton.com

Getting the pointer location in Android:
1) Move to Settings > Developer options
2) Enable the Pointer location.
3) Now move to any application for which you need the coordinates of a

particular location. Tap on the location and you will get the coordinates for
that spot at the top of the screen.

Figure-1: Enable the Pointer location.

Making the move to automation testing with Appium

198 www.kobiton.com www.kobiton.com

Figure-2: Get coordinates.

Getting the pointer location in iOS:
iOS does not support the pointer location and there aren’t even any third party apps
or tools which come to the rescue. Therefore you need to calculate it using screen
resolution and a little bit of prediction. In case you don’t get success at first, you can
use trial and error to get the needed location.

Now let’s look into each gesture one by one:

1) Tap on element
Method: tap(TapOptions tapOptions)

Usage: It is the simplest action, as the name suggests it will simply click/tap
on a particular location. It is a combination of press() and release()

Example:

TouchAction touchAction = new TouchAction(driver);
touchAction.tap(tapOptions()
 .withElement(element(androidElement)))
 .perform()

Making the move to automation testing with Appium

199 www.kobiton.com www.kobiton.com

NOTE: Here you can also put the wait along with the tap action, for example:

new TouchAction(driver)
.tap(tapOptions().withElement(element(androidElement)))
.waitAction(waitOptions(Duration.ofMillis(millis)))
.perform();

2) Tap on x, y coordinates
Method: tap(PointOption pointOptions)

Usage: It is used to tap on a particular x,y coordinate point.

Example:

TouchAction touchAction = new TouchAction(driver);
touchAction.tap(PointOption.point(1280, 1013))
.perform()

NOTE: Similar like Tap on element you can put the wait along with the tap action,
for example:

new TouchAction(driver)
.tap(point(x, y))
.waitAction(waitOptions(Duration.ofMillis(millis)))
.perform();

3) Press an element for a particular duration
Method: press(PointOption pressOptions)

Usage: It is used to apply the press action. After the press action you also
need to release so that the state would be in press mode. You do so by calling
the release() function after calling press().

Example:

TouchAction touchAction = new TouchAction(driver);
touchAction.press(element(element))
.waitAction(waitOptions(ofSeconds(seconds)))
.release()

Making the move to automation testing with Appium

200 www.kobiton.com www.kobiton.com

.perform();

4) Press x, y coordinates for a particular duration
Method: press(PointOption pressOptions)

Usage: Similar to Press(ing) an element for a particular duration, here you
just need to pass x, y coordinates instead of an element and don’t forget to
call the release() function after calling press().

Example:

TouchAction touchAction = new TouchAction(driver);
touchAction.press(point(x,y))
.waitAction(waitOptions(ofSeconds(seconds)))
.release()
.perform();

Automating swipe actions

Before we look into the Horizontal swipe let’s understand how we can
automate
swipe actions generally.

Swiping is a combination of tapping + moving actions. Appium does not
provide a direct method for swiping, so you need to combine a few methods
in order to achieve swiping. For example if you want to perform swiping then
first you have to press on a particular point and then specify the particular
amount of time during which you want to perform the swiping action and at
last you to move to another point - and don’t forget to call the release
method which used to release all the actions. So it’s actually simple: first
press -> wait(duration of swiping) -> move to (moveTo()) particular location.

You might be wondering why can’t we directly use moveTo() ?

If you recall, using the press method requires you to eventually call the
release method. So we are basically mimicking a swipe by entering the press
state, moving to a location, and THEN releasing.

Swiping can have an up/down/right/left direction so you need to apply the
right logic and have to provide the x, y coordinates for the press() and

Making the move to automation testing with Appium

201 www.kobiton.com www.kobiton.com

moveTo() methods.

And also please note these appium methods to get the device screen
measurements:

Figure-3: Screen Measurements.

int heightOfScreen =
driver.manage().window().getSize().getHeight();
int widthOfScreen =
driver.manage().window().getSize().getWidth();

int middleHeightOfScreen = heightOfScreen/2;

// To get 50% of width
int x = widthOfScreen * 0.5;

// To get 50% of height
int y = heightOfScreen * 0.5;

Making the move to automation testing with Appium

202 www.kobiton.com www.kobiton.com

Here Width → X and Height → Y coordinates.

5) Horizontal swipe: Using start and end percentage
of the screen height and width
Method and Usage: As we discussed above there is no particular method for
Horizontal swipe, and you need to perform the combination of press()-
>wait()->moveTo(). The moveTo() method is new to us - it is used to move
to particular location. Its syntax is: moveTo(PointOption
pressOptions)

The secret to moveTo lies in the coordinates - you need to mention the
starting and ending x,y coordinates in such a way that swiping can done from
left → right OR right → left direction. Note that when we say swipe right, we
mean moving the content from right to left, but the physical gesture is is
moving to the left. See figure 4 below for clarification.

Example: Let say we want to swipe right on the screen, so in practice you
need to press on the right side and, without taking your finger off of the
device, move your finger to left side. So we need to move from in the Right to
Left direction in order to make the Right Swipe.

Referring to figure 4 below, we have the swiping UI element placed on the
screen from location (0,360) to (1080, 780). Now in order to attempt swipe in
the right direction you have to first press anywhere in swipe area, for
example let’s say (972, 500), and now without taking away the press action
you need to move to left side suppose (108, 500) [Please note that Y
coordinate is constant as we just need to change the X coordinates for
swiping]. At that point we have achieved the swipe and now we can able to
release the action and at last call the perform method to send all commands
to the Appium server to perform on the UI.

Making the move to automation testing with Appium

203 www.kobiton.com www.kobiton.com

Figure-4: Swiping in action.

This is just one scenario for achieving a swipe gesture. Ideally first we need to
make a decision as to what is the “right side of the screen”. We do this by
considering 90% of the screen width. For example, if the screen resolution is
1920 x 1080, 1080 is the width of Screen and 90% of that width would equals
to 972, so we have got our X coordinate for what we consider the “Right”
side. In a similar manner we will need the X coordinate for the Left side and
this time we can consider 10% of the width which would give us an X
coordinate of about 108. So we have got X coordinates for Left and Right
direction. For the Y coordinate we can choose any value as long as it falls in
the swiping area - for example, let’s say our swiping area is between (0, 360)
to (1080, 780), so you can choose any value for the Y coordinate in between
360 to 780.

NOTE: It is important that the Y coordinate have same value because we are

Making the move to automation testing with Appium

204 www.kobiton.com www.kobiton.com

focusing on only swiping (not scrolling) so only the X coordinate will change
during the process and Y will remain constant. Ideally you should choose the
half height of swiping area for Y coordinate.

Finally, you can perform the swipe gesture:

TouchAction swipe = new TouchAction(driver)
.press(PointOption.point(972,500))
.waitAction(waitOptions(ofMillis(800)))
.moveTo(PointOption.point(108,500))
.release()
.perform();

Same way if you want to swipe in the left direction you have to first press on
the left side and move to the right side.

NOTE: This method works in a similar way on Android and iOS but the
location differs according to Mobile device being used (given the swipe is
dependent on coordinates which is dependent on screen resolution).
Moreover on the iOS side you can’t find the location directly so you will need
to use a trial and error approach.

6) Vertical swipe(scroll): Using start and end
percentage of the screen height and width
Usage: Scroll is the same as swipe but the direction is different. In swiping we
are dealing with horizontal direction where as in scrolling we are dealing with
vertical direction - but the rest of the logic will remain the same.

Scrolling can done in the up → down OR down → up direction.

Example: Let’s look at scrolling Down. On a mobile device in order to scroll
down on screen we swipe in the “down to up” direction. It’s actually 3 steps
we need to complete:

1) Find the swiping area.
○ Starting point = (0,360)
○ Ending point = (1080,1920)

2) Mark the scrolling points (We will use the height from scrolling area

Making the move to automation testing with Appium

205 www.kobiton.com www.kobiton.com

only. As per below image, the scrolling area is starting from
approximately 30% of the screen height and ending at the end of the
screen).

○ Down area point:
i) X = Middle of Screen= 0.5 x 1080 = 540

(This will be same for starting and ending location)
ii) Y = 95% height of Screen = 0.95 x 1920 = 1824.

Location = (540,1824)
○ Up area point:

i) X = Middle of Screen=540
ii) Y = 35% height of Screen = 0.35 x 1920 =

672(Percentage value must be >30%).
Location = (540,672)

3) Perform scroll action using Appium.

TouchAction swipe = new TouchAction(driver)
.press(PointOption.point(540,1824))
.waitAction(waitOptions(ofMillis(800)))
.moveTo(PointOption.point(540,672))
.release()
.perform();

Making the move to automation testing with Appium

206 www.kobiton.com www.kobiton.com

Figure-5: Scrolling in action.

Scroll up will work the same but with different location points.

7) Drag(swipe) one element to an another element
Dragging one element to another element is one kind of swiping action.
But here location in coordinates would not matter as we have both of the
elements(1. Element which needs to be dragged, 2. Element upon which
another element will be dragged).

TouchAction swipe = new TouchAction(driver)
.press(ElementOption.element(element1))
.waitAction(waitOptions(ofSeconds(2)))
.moveTo(ElementOption.element(element2))
.release()
.perform();

Making the move to automation testing with Appium

207 www.kobiton.com www.kobiton.com

8) MultiTouch
As the name suggests it means multiple touches happening at the same time.
For example on iOS if you want to move to the Main screen, you need to use
5 fingers and do a swipe.

Multi Touch is handled by the MultiTouchAction class. It has a
add(TouchActions touchActions) method so in which we need to pass
a TouchActions object.
So let say you want to press on 5 different points at a time then first you
need to create 5 TouchActions, but here the important thing is we are not
having a perform method at the end. We just need to call the release method
for the TouchAction object, and then pass those values into the add method
of the MultiTouchAction class.

You can perform Multi Touch for:

1) Multiple touches at a time.

TouchAction touchActionOne = new TouchAction();
touchActionOne.press(PointOption.point(100, 100));
touchActionOne.release();

TouchAction touchActionTwo = new TouchAction();
touchActionTwo.press(PointOption.point(200, 200));
touchActionTwo.release();

MultiTouchAction action = new MultiTouchAction();
action.add(touchActionOne);
action.add(touchActionTwo);
action.perform();

OR if you want to perform multi touch on particular elements then use the
below code snippet.

TouchAction touchAction1 = new TouchAction(driver)
.tap(ElementOption.element(e1))
.release();

TouchAction touchAction2 = new TouchAction(driver)
.tap(ElementOption.element(e2))
.release();

Making the move to automation testing with Appium

208 www.kobiton.com www.kobiton.com

MultiTouchAction action = new MultiTouchAction();
action.add(touchAction1);
action.add(touchAction2);
action.perform();

2) Swiping using multiple fingers.

TouchAction touchActionOne = new TouchAction();
touchActionOne.press(PointOption.point(100, 100));
touchActionOne.moveTo(PointOption.point(500, 100));
touchActionOne.release();

TouchAction touchActionTwo = new TouchAction();
touchActionTwo.press(PointOption.point(100, 200));
touchActionTwo.moveTo(PointOption.point(500, 100));
touchActionTwo.release();

MultiTouchAction action = new MultiTouchAction();
action.add(touchActionOne);
action.add(touchActionTwo);
action.perform();

NOTE: As mentioned earlier only MultiTouchAction should call the perform()
method at the end. For TouchActions , the perform() method should not be
called otherwise instructions will be sent to the Appium server and the click will
happen before the Multi Touch action.

In this chapter we have looked into the most used scenarios in the Appium
world. These methods all work on both Android and iOS.

More details about all the different TouchAction methods can be found on the
official appium docs on the github project.

Making the move to automation testing with Appium

209 www.kobiton.com www.kobiton.com

Chapter-12: Appium Tips and
Tricks
You’ve made it this far! By now you’re a full-fledged Appium ninja. It’s time to round
out some of your new skills with additional tips and tricks.

Appium is a sophisticated and ever updating testing platform, and with a growing
user base forming, you’re bound to see some cool tricks by monitoring discussion
boards and blogs.

In this chapter, we’ll look at some practical tips that you can put into practice
immediately to improve your test case authoring. Let’s get started!

1) How to check whether an Android app is
already installed or not?
There are scenarios in which you want to check out whether your Android
app is already installed on the device or not, but why would you need that?

A very simple (but common!) use case requires testing a part of the app that
is only accessible to logged-in users. So every time you execute your test
case, the first step would be to login which is a time consuming operation
(from an execution perspective).

We can skip the login if we’ve already logged in on the previous test
execution, as it takes unnecessary time. We can do 2 things:

1) Set the desiredcapabilities for “noReset” as true and “fullReset” as
false. So if your app has already been installed, Appium neither
uninstalls it nor clear the cache data. It will simply open the app every
time, So login will take place only at once, when you open the app
first time after installing it.

2) To avoid reinstalling the app every time, fire $ adb shell pm
list packages on your terminal - it lists all the packages of
installed apps. You can create test logic like if the app you want to
automate is displayed on that list then you can skip the installation.

Now the question is how would you fire this command within your
programming language?

In Java this is done using the ProcessBuilder class:

Making the move to automation testing with Appium

210 www.kobiton.com www.kobiton.com

String line;
Process p = Runtime.getRuntime().exec("adb shell pm list
packages");
BufferedReader input = new BufferedReader(new
InputStreamReader(p.getInputStream()));
while ((line = input.readLine()) != null) {
 System.out.println(line);
}
input.close();

2) How to enable mouse pointer location on
Android at runtime ?
As we discussed in an earlier chapter, if there is no unique locator assigned to
a UI element then the only option is to tap on a particular point. By enabling
“pointer location” in developer options in Android we can get the x, y
coordinates for any point.

Moreover having the mouse pointer location helps so much in debugging,
especially whenever you are dealing with swipe, touch and scroll functions in
Appium.

But what if you are dealing with remote devices(such as Kobiton or
BrowserStack devices)?

There are case in which you cannot access the remote device before
executing the automation test cases. So you will need some way to enable
the pointer location on that devices at run time.

If you want to enable mouse pointer location using the terminal then fire
command:

$ adb shell settings put system pointer_location 1 [Use 0
for disable]

In Java you can use this code:

public static void main(String[] args) throws IOException,
InterruptedException {
 ProcessBuilder pb = new ProcessBuilder("adb", "shell",
"settings", "put", "system", "pointer_location", "1");

Making the move to automation testing with Appium

211 www.kobiton.com www.kobiton.com

 Process pc = pb.start();
 pc.waitFor();
 System.out.println("Finish!");
}

You can find this example on our github page on our github page:

Figure-1: Android Point Location Enabled.

3) How to capture Screenshots On Test Failure?
This is the most vital feature of Appium (and Selenium). Practically speaking,
with automation you are not observing the execution of all test cases, so in
case a failure occurs you won’t have the exact details of the failure. That’s
why this feature comes in handy, because it will capture the screenshot
whenever a failure occurs. And by looking at the screenshot sometimes you
can quickly figure out the failure cause without taking a look at the error log.

Note: Cloud device platforms like Kobiton offer the ability to automatically
take not only screenshots of every action, but also record full video of your
test sessions as well as detailed Appium and device logs.

Below is the code you use to capture a screenshot:

private void takeLocalScreenshot(String imageName) throws
IOException {
 File scrFile = ((TakesScreenshot)driver).
getScreenshotAs(OutputType.FILE);
 FileUtils.copyFile(scrFile, new
File("failureScreenshots/" + imageName + ".png"));
}

But we need to call this method only if test cases are failing or being skipped.
Thus we need to check the status of the test case, and, as we are using the

Making the move to automation testing with Appium

212 www.kobiton.com www.kobiton.com

TestNG test framework, we can use its methods to check the status of the
executing test case.

@AfterMethod(alwaysRun = true)
public void afterMethod(final ITestResult result) throws
IOException {
if (result.getStatus() == ITestResult.FAILURE ||
result.getStatus() == ITestResult.SKIP) {
takeScreenshot(result.getMethod().getMethodName().toLowerCase
() + "_" + System.currentTimeMillis());
}

This code example works for both iOS and Android. The code is implemented
in the github repository BaseTest.java

4) How to dismiss dialogs/alerts automatically ?
In mobile application notifications, popups and dialogs occur at random so in
order to access the app we must handle that immediately as soon as they
appear.

Appium can handle the system dialogs/alerts in 2 ways:

1) Manually: In this approach you have to find the locators of the
allow/deny button of the element and then perform a click()
action on it.

2) Automatically: You can set the desired capabilities to auto accept or
deny the alert/dialogs.

Auto Accept the Alerts:

capabilities.SetCapability("autoAcceptAlerts", true);

Auto Dismiss the Alerts:

capabilities.SetCapability("autoDismissAlerts", true);

In some scenarios when you are not able to get the dialog elements, you can
leverage the Appium image comparison feature and find the element by
image. We will look more into that feature in a subsequent chapter.

5) How to handle notifications in Android?
Push notification assertion is a common exercise you need to be familiar with
because many apps send a push notification while you are accessing the app.

Making the move to automation testing with Appium

213 www.kobiton.com www.kobiton.com

Appium provides a super easy way to open notifications - you just have to call
the openNotifications() method.

You can get the title of the notification using android:id/title and the
content of the notification using android:id/text locators.
For example:

driver.openNotifications();
List<AndroidElement> titleElement =
driver.findElements(By.id("android:id/title"));
List<AndroidElement> contentElement =
driver.findElements(By.id("android:id/text"));

for (int i = 0; i < titleElement.size(); i++) {
 System.out.println(titleElement.get(i).getText() + " : "
+ contentElement.get(i).getText());
}

See AndroidTricks.java on our github repository.

NOTE: driver.openNotifications() method only applies to
AndroidDriver object. It is not available for IOSDriver.

6) How to make test cases fail fast in order to
quickly get an error message?
As strange as the name of this trick may sound, there are cases when you
want to fail your test cases faster in order to get the error message to fix the
test case.

Using the newCommandTimeout desired capability you can specify the time
in seconds for which Appium will wait for a new command from the client
before assuming the client quit and ending the session.

capabilities.setCapability("newCommandTimeout", 15);

If you are executing the test cases locally you want them to fail quickly, so
ideally you should wait for 10 to 20 seconds (depends on app) because during
that time app will load all the resources. With remote devices, due to
network latency and other reasons, apps on remote device may take more
time to load the resources so for remote execution that time period should
be closer to 60 seconds.

Making the move to automation testing with Appium

214 www.kobiton.com www.kobiton.com

7) How to handle the hide_keyboard() method?
Essentially, it’s as simple as calling hide_keyboard(). However, the
hide_keyboard() method works differently on iOS and Android because
the internal architecture of the soft keyboard on both platforms is not the
same. It also depends on the physical device model and its operating system
version. Therefore, standard practice is you should put the
hide_keyboard() method in a try/catch block.

try {
driver.hide_keyboard();
} catch(Exception e) {}

8) How can you write test cases faster?
Unfortunately QA engineers are facing increasing pressure to deliver more,
faster. In this Agile world, requirements and releases are changing faster than
ever which means your Application Under Test is constantly changing.

And with continuous deployment, there is a good chance your test case
becomes obsolete before that glorious bug is discovered.

The following tips will help you to develop test cases at a faster pace:

● Use a local appium server and local device: Appium performs the
best with a locally installed appium server and having the script
execute on a physically connected real device. Save the cloud device
testing for increased coverage testing and for full regression tests.

● Extract all the UI element locators of the application at first go: You
can simply navigate the whole app with Appium Inspector (or another
tool) and note down all relevant Ids, text or class name for the UI
elements. The objective here is to save time by getting all the element
locators at first go, so you won’t have to find the locator of element
when you are in the middle of writing your test case.

● Communicate with developers and assign a valid, and unique, ID to
UI elements: This is the most common scenario where no unique id,
class name or text is assigned to a UI element so you have to use the
XPath locator which might contain the index. But relying on XPath
indexes is brutal especially when your application under test is under
development, because minor changes in the UI can change the index
of all elements. As a point of cooperation between QA and
Development, a naming convention or best practice should exist the
ensure unique IDs are used. Whenever you find yourself using an

Making the move to automation testing with Appium

215 www.kobiton.com www.kobiton.com

XPath, stop to ask why and see if you can have the dev team provide
unique IDs instead.

10) How to handle to mobile data, wifi and
airplane mode in Android?
In order to automate various connectivities such as mobile data, wifi and
airplane mode, Appium provides a ConnectionState class for setting and
getting the network connection for a connected android device/emulator.

For example if you want to turn on only wifi(Not mobile data and airplane
mode), you can use this command:

ConnectionState state = driver.setConnection(new
ConnectionStateBuilder().withWiFiEnabled().build());

You can see the example on our github page.

This API works based on the android device OS versions so please go through
the official appium documentation in order to get more information.

NOTE: The above mentioned APIs are not available for iOS.

11) How to switch context?
There are two main types of context in Appium:

1) WEBVIEW
2) NATIVE

While we are working with a native application, the context will be NATIVE.
And when webview is being used on some screen it will have the WEBVIEW
context. Sometimes you actually have both in a single application. You might
have experienced the webview when you are dealing with payments in an
application- generally the payments page is integrated the in form of
webview (being provided by the payment gateway). So in that case you need
to change the application context from NATIVE to WEBVIEW in order to get
control of WEBVIEW elements.

Using the below code you can get the current context of your app:

String context = driver.getContext();

In a similar way you can get the all contexts available to automate using:

Making the move to automation testing with Appium

216 www.kobiton.com www.kobiton.com

Set<String> contextNames = driver.getContextHandles();

And using this code you can change the context to WEBVIEW:

driver.context("WEBVIEW");

You can use the this method in order to change the context to WEBVIEW if it
is found:

public void changeDriverContextToWebView(AppiumDriver driver)
{

 Set<String> contextHandles =
driver.getContextHandles();
 for (String name: contextHandles) {
 if (name.equals("WEBVIEW"))
 driver.context(name);
 }

}

12) How can you minimize and reopen the app
again?
There are some scenarios where you need to minimize the application and
need to re open it without killing the current session. Using the
runAppInBackground(Duration time) method you can hide your
application for a particular duration.
For example if you want to minimize application for 5 seconds then you
might use:

driver.runAppInBackground(Duration.ofSeconds(5));

13) How to start Appium Server
programmatically?
In all our examples up until now we have presumed that you have started the
appium server explicitly using the command line or using the Appium
Desktop application.

Making the move to automation testing with Appium

217 www.kobiton.com www.kobiton.com

Now when you are thinking to integrate appium UI test cases with Jenkins (or
generally within in a CI/CD pipeline) you have two options to start the Jenkins
server:

1) Specify the command($appium&) in the build section of Jenkins to
run the appium server.

2) Start the Appium server by writing the code in the test framework in
such a way that the server starts before the tests execute, and quits
automatically at the end of the execution.

Here, option 1 is not advisable because if a test failure occurs then the
Appium server will be continuously running and occupying memory of the
physical server. While in option 2 we have server quit code written at the end
of execution, so even if failure occurs it will quit the Appium server and free
the space in memory.

You can start the server using 2 classes:

1) AppiumDriverLocalService: It is simply used to start and stop
the appium server.

2) AppiumServiceBuilder: This class is used to build the appium
service, here you can specify the appium server url, port, desired
capabilities and some other parameters. This is recommended if you
really want to customize the server details.

So let’s look into the example of both classes:

AppiumDriverLocalService:

AppiumDriverLocalService appiumDriverLocalService =
AppiumDriverLocalService.buildDefaultService();

public void setUpPage() throws IOException
{
 AppiumDriverLocalService appiumDriverLocalService =
AppiumDriverLocalService.buildDefaultService();
 appiumDriverLocalService.start();
}

public void tearDownAppium()
{
 super.tearDownAppium();
 appiumDriverLocalService.stop();
}

Making the move to automation testing with Appium

218 www.kobiton.com www.kobiton.com

In the above example Appium will start the server using default url and port.
You can find this example at our github project.

AppiumServiceBuilder:

AppiumServiceBuilder builder;
AppiumDriverLocalService appiumDriverLocalService;

public DesiredCapabilities getDesiredCapabilities()
{
 DesiredCapabilities desiredCapabilities = new
DesiredCapabilities();

...
 return desiredCapabilities;

}

public void startServer() throws IOException {
 DesiredCapabilities desiredCapabilities =
getDesiredCapabilities();
 AppiumServiceBuilder builder = new

AppiumServiceBuilder();
 builder.withIPAddress("127.0.0.1");
 builder.usingPort(4729);
 builder.withCapabilities(desiredCapabilities);
 builder.withArgument(GeneralServerFlag.SESSION_OVERRIDE);
 builder.withArgument(GeneralServerFlag.LOG_LEVEL,

"error");
 appiumDriverLocalService =

AppiumDriverLocalService.buildService(builder);
 appiumDriverLocalService.start();
}

public void stopServer() {
 appiumDriverLocalService.stop();
}

Here as you can see appium will use Port: 4729, URL: 127.0.0.1 with some
Desired Capabilities and flags.

You can find this code at out github page.

Making the move to automation testing with Appium

219 www.kobiton.com www.kobiton.com

Hopefully you found (or will find!) these tips and tricks useful as you progress your
journey of being an Appium expert. The Appium community is constantly expanding
and you’ll find tremendous tips and tricks shared by other developers and testers.
Keep reading forums and blogs to keep your knowledge up to date.

Jonathan Lipps, the project lead of Appium, has created an amazing blog at
https://appiumpro.com in which he has compiled some of the best practices and
tricks to use Appium in an effective way. We strongly recommend you visit this blog
and subscribe to the helpful mailing list to continue learning interesting things about
Appium.

Making the move to automation testing with Appium

220 www.kobiton.com www.kobiton.com

Chapter-13: Image Comparison
Using Appium
The mass advancement in machine learning and artificial intelligence is affecting
every sector of every industry, and test automation is no exception.

AI is being used in multiple areas of software testing, including:

1) Visually automated testing: Drive testing through the UI by using Image
Comparison

2) Automated API Testing: Using machine learning algorithms we can analyze
the API calls in more effective ways

3) Test Coverage: Knowing what to test is a science unto itsel - sometimes a
small change has a large impact or vice versa. Using AI tools you can know
what areas of the app changed based on source code analysis and which test
cases should be executed (or updated)

4) Self-Healing Test Scripts: The most common scenario in automation test
cases is test case failure due to locator changes. In order to fix that we need
to find the valid locator again which is time-consuming and happens
frequently. Machine learning/AI algorithms can learn and observe the
changes of an application’s domain object modeling structure and can
automatically suggest the new locators to use.

5) Automatically write the test cases: As AI keeps improving, we will see an
increased ability for test cases to be automatically created, based either on
self exploring or by user observation.

Most of the AI solutions are being developed by 3rd party vendors and not within
the Appium framework directly. However, the Appium community recently
introduced the Image comparison feature which is great for testing at the UI level
and comparing images, which makes our test scripts less brittle. Essentially, we get
the benefit of a new Image locator strategy we can use in our test scripts.

The feature was developed by incorporating OpenCV, one of the leading image
comparison libraries.

This chapter is split into 2 sections:

1) Setup and Linking OpenCV with Appium
2) Using the Image comparison feature in automation

Making the move to automation testing with Appium

221 www.kobiton.com www.kobiton.com

Setup and Linking OpenCV with Appium
In order to link the OpenCV library to Appium, we must install the Appium CLI. This is
3 step process:

1) Install the Appium CLI.
2) Install the OpenCV library.
3) Link the OpenCV library with Appium.

So let’s look into all options one-by-one.

1) Install Appium CLI

1) Make sure you have installed node and npm. If you have brew
installed on your mac then you can just execute: $ brew install
node to install node.js along with npm.

2) Install appium: $ npm install appium

3) Verify that appium is installed correctly using the command: $

appium -v

4) Also check the path where Appium is installed: $ which appium
and move to that path.

Figure-1: Appium location.

5) Now find the actual path of the appium binary and move to it.

Making the move to automation testing with Appium

222 www.kobiton.com www.kobiton.com

Figure-2: Appium binary location.

Figure-3: Appium Node module.

As you can see in the above screenshot all globally defined node modules are
present under /usr/local/lib/node_modules location, so you have to install
the OpenCV library at this global location.

2) Install the OpenCV library
1) As we discussed previously we need to install the OpenCV module

globally so we will use the -g flag. Use this command to install the
OpenCV library for node: $ npm i -g opencv4nodejs
After successful installation you can find the opencv4nodejs library
under the same global location(/usr/local/lib/node_modules).

Making the move to automation testing with Appium

223 www.kobiton.com www.kobiton.com

Figure-4: opencv4nodejs Node module.

3) Link the OpenCV library with Appium
1) Now we need to link this module with Appium, using:

$ npm link opencv4nodejs

NOTE: You can also install the opencv4nodejs package inside the
appium > node_modules directory instead of linking.

2) Now move to the appium node module and move to the
node_modules directory, there you will find that opencv4nodejs is
linked.

Making the move to automation testing with Appium

224 www.kobiton.com www.kobiton.com

Figure-5: opencv4nodejs module is linked with appium.

That’s it, now you are ready to use Image comparison feature in Appium.

NOTE: You can also directly install the opencv4nodejs node module under
Appium node_modules, the steps would be:

1) Move to appium directory: $ cd
/usr/local/lib/node_modules/appium
2) Install opencv4nodejs: $ npm install opencv4nodejs

Using the Image comparison feature in automation
Why do we need the image comparison feature in appium?
There are cases when in the application there is no unique locator present for a
particular UI element, and in that case, you can’t do anything except tapping at a
particular location which is a very fragile operation (that is, prone to failure). It is
workable only if the location of that UI element is static every time - if the UI
element is changing its location every time you open your application or based on
the device it’s executing on, then tapping on a particular location isn’t the preferred

Making the move to automation testing with Appium

225 www.kobiton.com www.kobiton.com

option. With the new image comparison feature inside Appium, we have an image
locator strategy. Using this locator we locate elements based on their image.

With the image locator strategy, instead of typical unique locators, you need to pass
the string which is the Base64 encoded format of the image.

There are many ways to get the Base64 encoded version of the Image, but we use
the simplest.

Use this method to convert an image(.png/.jpg file) to Base64 String format.

public String getReferenceImageB64(String imgPath) throws
URISyntaxException, IOException {
 URL refImgUrl =
getClass().getClassLoader().getResource(imgPath);
 File refImgFile = Paths.get(refImgUrl.toURI()).toFile();
 return
Base64.getEncoder().encodeToString(Files.readAllBytes(refImgF
ile.toPath()));
}

Now that we have the image encoded as Base64, we can locate elements by this
image.

Image Locator Strategy:

MobileElement elementByImage = (MobileElement)
driver.findElementByImage(refImageBase64);

NOTE: Just as with the other locator strategies we can perform actions like click(),
getText(), sendKeys() etc...

Now to understand this better let’s take one practical automation test case which
uses the image locator strategy.

Image Comparison Automation Test Case
We have taken one simple image application into consideration in order to
understand the image comparison feature of Appium. That application will display
the image from the given image URL.

Making the move to automation testing with Appium

226 www.kobiton.com www.kobiton.com

Now the main problem is that the DOM structure contains no details for the image
view, so we won’t be able to verify whether image view is visible or not after clicking
on submit. Moreover even if we verify that image view is visible it won’t give us
confidence that the displayed images are being fetched from given image URL. So in
order to check this use case, we need to use Appium’s image comparison
functionality.

Figure-6: ImageView is not available for the appeared image.

Here we will download the image from the given URL and will check that the
downloaded image is present on the application(after clicking the submit button).

Follow a 2 step process:

1) Download the image from the image URL.
2) Verify that the downloaded image is present on the app after entering the

image URL and clicking on the Submit button.

But before moving to the business logic part we need to integrate the latest version
of the Appium java-client(7.0.0) which supports the new image locator strategy.
build.gradle

...

Making the move to automation testing with Appium

227 www.kobiton.com www.kobiton.com

dependencies {
...
 testCompile group: 'io.appium', name: 'java-client',
version: '7.0.0'
}
...

After defining the dependency we can proceed.

1) Download the image from the image URL and convert it to Base64-encoded
version:
In the image locator strategy we are dealing with the base64-encoded format of
the image so downloading the image is not sufficient, we need to convert it to
base64-encoded format. Below method will convert any image from it’s URL to
base64-encoded format.

public String getBase64FormatOfImageFromURL(String imageURL)
throws IOException, URISyntaxException {
 URL url = new URL(imageURL);
 try {
 InputStream is = url.openStream();
 byte[] bytes =
org.apache.commons.io.IOUtils.toByteArray(is);
 return
org.apache.commons.codec.binary.Base64.encodeBase64String(byt
es);
 } catch (Exception e) {
 throw new RuntimeException("Please check the network
on your server! It seems disconnected.");

 }
}

2) Verify downloaded image is present on the app (after entering the image
URL and clicking on the Submit button).
After getting the base64 format of the downloaded image, you need to check
that base64-encoded string of that image is present on the application (after
entering the image URL and clicking on the submit button on the app).

Please find the below code for reference:

public void isImageAppearOnApplication(String
base64FormatImage) throws IOException, URISyntaxException {

Making the move to automation testing with Appium

228 www.kobiton.com www.kobiton.com

 waitUtils.staticWait(5000);
 try {

Assert.assertTrue(AppiumUtils.isElementDisplayed((AndroidElem
ent) driver.findElementByImage(base64FormatImage)), "Expected
Image did not appear on dashboard Screen.");
 } catch (NoSuchElementException e) {
 throw new RuntimeException("Expected image didn't
display on Application!");
 }
}

In the above code, notice how we have put a static wait of 5 seconds - this is
because as soon as the SUBMIT button is tapped, it will take some time to fetch
and display the image on the app from the image URL.

NOTE: Here we could have put the dynamic wait instead of static if Image view
was present in DOM for the displayed image.

Using Image Comparison to Locate an Element
A more common use case for Image comparison is to find an element that you can’t
find in any other way. We can use image comparison to find, for example, a button
by comparing the image of that button and then perform an action on it.

We’re going to use a somewhat contrived sample application but it will help
demonstate the concept. In this sample application there are 3 icons (pretend that
they’re buttons!) and none of them have any id or unique locator assigned (You
could use the indexing but we want to focus on the image locator strategy). When
you click on the first image the textview will be visible saying “First Icon clicked!”.
Similarly when you click on the second or third image, the textview will visible
accordingly.

We want to click on the first button and want to assert that the “First Icon clicked!”
textview is visible. This will be 3 step process:

1) Get the image file of the button.
2) Get the element using the image.
3) Click on the element.

Making the move to automation testing with Appium

229 www.kobiton.com www.kobiton.com

Figure-7:Android application having 3 buttons.

So let’s understand the each step:

1) Get the image file of the button
There are many ways you can get the image for the any of element.

1. Capture the screenshot of the application and crop the needed
element’s image.

2. Using Appium Inspector/uiautomatorviewer

Here we can use the 2nd approach since it is more convenient for our
example. We can inspect the elements along with the image screenshot in
the uiautomatorviewer tool and using snipping tool(windows)/image
capture(mac) we can simple capture the image of selected area easily. Going
with a capture is going to be inaccurate - your best bet is to get the source
image file from the developers or UI/UX team.

Making the move to automation testing with Appium

230 www.kobiton.com www.kobiton.com

2) Get the element using the image
After getting the image we need to convert the image into Base64 encoded
format. In java below code will convert any image file(.jpg/.png) to Base64
encoded format.

public static String getBase64StringFormatOfImage(String
imgName) throws URISyntaxException, IOException {
 URL refImgUrl = ImageUtils.class.getClassLoader().
getResource(imgName);
 File refImgFile = Paths.get(refImgUrl.toURI()).toFile();
 return Base64.getEncoder().
encodeToString(Files.readAllBytes(refImgFile.toPath()));
}

Here we will pass the image name as an argument in the method which we have
from step 1. And using this code we can get the element from image.

String base64FormatOfImageFromImage =
ImageUtils.getBase64StringFormatOfImage(imageName);

WebElement iconButton =
androidDriver.findElementByImage(base64FormatOfImageFromImage
);

3) Click on the element
After getting an element you just need to click on the element. Using:
iconButton.click();

And on the last step we will make assertion that “First Icon clicked!” textview is
visible when click() action performs.

String expectedText = "First Icon clicked!";

String actualText =
androidDriver.findElement(By.id("com.example.pratik.myapp23:i
d/textView")).getText();

Assert.assertEquals(expectedText, actualText, "Actual and
Expected Text didn't match!");

Making the move to automation testing with Appium

231 www.kobiton.com www.kobiton.com

This feature opens the door to new possibilities because there were cases when the
traditional locator strategy could not help us. But now, by using the Image locator
strategy you can literally find any UI element and apply an action upon it.

Image matching: Find occurrence of partial image in
the full image
Another important capability in the image comparison feature is to match the partial
image on the full image. Appium provides a method:

findImageOccurrence(byte[] fullImage, byte[] partialImage,
@Nullable OccurrenceMatchingOptions options)

which serves this purpose.

We will use a simple example to demonstrate this. We will use an Android
application showing the full size of an image and we will verify that the partial image
of that full image is present.

These are the steps to assert that the partial image is present in the full image:

1) First of all we need to convert both partial and full images to the Base64
encoded byte format. Below method is responsible to convert any image to
it’s Base64 encoded byte format.

/**
* This method is used to convert Image(.png file) to Base64
Byte format.
*
* @param imgName
* @return
* @throws URISyntaxException
* @throws IOException
*/
public static byte[] getBase64ByteFormatOfImage(String
imgName) throws URISyntaxException, IOException {
 URL refImgUrl =
ImageUtils.class.getClassLoader().getResource(imgName);
 File refImgFile = Paths.get(refImgUrl.toURI()).toFile();
 return Files.readAllBytes(refImgFile.toPath());
}

Making the move to automation testing with Appium

232 www.kobiton.com www.kobiton.com

2) Now we need to call the findImageOccurrence() method with

appropriate parameters.

OccurrenceMatchingResult imageOccurrence =
androidDriver.findImageOccurrence(fullImage, partialImage,
new
OccurrenceMatchingOptions().withThreshold(0.1).withEnabledVis
ualization());

 Here we need to pass 3 parameters:

1. Base64 encoded byte format of Full Image
2. Base64 encoded byte format of Partial Image
3. New OccurrenceMatchingOptions() with

withThreshold(0.1) & withEnabledVisualization()

withEnabledVisualization(): In order to enable the visualization so
that you can get the visualization length.

withThreshold(0.1): This is the threshold value for image matching. If
you don’t use this method and you have only small portion of the full image
to compare then you might face an error: “Cannot find any occurrences of
the partial image in the full image above the threshold of 0.5”. Here we have
used this method with a 0.1 value which means we have put a minimum
threshold of 0.1 so we won’t get the exception.

3) Add the assertion by checking that the length of visualization is greater than

0.

Assert.assertTrue(imageOccurrence.getVisualization().length >
0 , "Partial image is not present!");

VisualizationTest.java

@Test
public void testVisulization() throws IOException,
URISyntaxException {
 byte[] fullImage =
Base64.encodeBase64(ImageUtils.getBase64ByteFormatOfImage("ab
stractFullImage.jpg"));

Making the move to automation testing with Appium

233 www.kobiton.com www.kobiton.com

 byte[] partialImage =
Base64.encodeBase64(ImageUtils.getBase64ByteFormatOfImage("ab
stractPartialImage.png"));

 OccurrenceMatchingResult imageOccurrence =
androidDriver.findImageOccurrence(fullImage, partialImage,
new
OccurrenceMatchingOptions().withThreshold(0.1).withEnabledVis
ualization());

System.out.println(imageOccurrence.getRect().getDimension());

System.out.println("X:"+imageOccurrence.getRect().getX());

System.out.println("Y:"+imageOccurrence.getRect().getY());
 System.out.println("Height:"+imageOccurrence.getRect().
getHeight());
 System.out.println("Width:"+imageOccurrence.getRect().
getWidth());

System.out.println(imageOccurrence.getVisualization().length)
;

Assert.assertTrue(imageOccurrence.getVisualization().length >
0 , "Partial image is not present!");
}

In order to get more details on image comparison visit the official appium docs.

You can find the above complete examples on our GitHub page.

If you want to know more about the image locator strategy, please review this article
on Jonathan Lipps’ blog: https://appiumpro.com/editions/32

Making the move to automation testing with Appium

234 www.kobiton.com www.kobiton.com

Chapter-14: End-to-End Testing
We’ve covered a lot up until this point. If you’ve stuck with us, you should hopefully
feel far more knowledgeable about Appium. Don’t worry if you feel it hasn’t all quite
“come together” yet. Start small and write some simple test cases. You don’t need to
use the advanced concepts like our design patterns until you become more
comfortable with the basics of Appium.

This chapter aims to help you bring in all the moving pieces and combines everything
you’ve learned up to now by showing you how to apply all your knowledge in an
“end-to-end” test. At times we’ll reference previous sections, and we’ll also rehash
some information we’ve previously covered. Seeing coverage from another angle
will help solidify your knowledge.

This chapter is divided into 4 sections:

1) Setting up Appium.
2) Test Planning.
3) Test Setup.
4) Test Case Writing and Execution.

1) Setting up Appium
This is a section we won’t repeat here as it was covered extensively in the
first chapter. Setting up environments isn’t ever any fun but once it’s setup
you’re good to go. We’re going to assume you have everything setup - and
refer to the first chapter if you need some help.

2) Test Planning
As the expression goes - “Measure twice, cut once”. Some planning up-front
is going to save you a lot of headache later on. And good test planning means
a little experimentation with manual testing before starting automation.
Specifically:

1) The first thing is you need to check application compatibility or

suitability for automation testing. You can check that by verifying the
values of selectors using the locator inspection tool (Appium
accessibility inspector or UiAutomator). You can quickly assess the
locators of basic UI elements such as username field, password field,
login button etc. and if you don’t find unique locators for them you’re
going to need to use Xpath which is less than ideal. If at all possible,

Making the move to automation testing with Appium

235 www.kobiton.com www.kobiton.com

work with the development team to see if they can assign unique
locators to UI elements.

2) After verifying the availability of unique locators, you need to explore
the whole application thoroughly, you need to understand each and
every feature of the app and need to prepare the list of the most
important ones. After preparing the list you can prepare manual test
cases. With automation and parallel execution, keep in mind that your
test could be executed in a random order at any point of time so it
should be very granular, and it is important that the test cases you
design are modular and independent.

3) Test Environment Setup
In order to perform automation using Appium you need to:

1) Write the code which will find the UI element on the screen.
2) After getting the element, write the code which will perform an action

upon it.

This is all done within your test code - the Appium server will interact with
the application artifacts(.ipa or .apk) and your test code:

Figure-1: Appium Process.

So you can create a native mobile application on XCode(for iOS) and Android
Studio(for Android) OR you can also use the build (.ipa/.apk) directly, write
the UI test cases in your preferred programming language and executes them
manually from the IntelliJ IDEA, Eclipse IDE, Visual Studio or IntelliJ
PHPStorm.

Making the move to automation testing with Appium

236 www.kobiton.com www.kobiton.com

Moreover, if you want to achieve end-to-end automation and want UI test
cases as the part of your CI/CD process then you can also integrate them with
tools such as Jenkins and BitBucket.

So first thing first is you need to get the build(.ipa/.apk), choose the
programming language for your automation code and get the physical
device/Simulator/Emulator for testing.

4) Test Case Writing
After designing the test cases and setting up the test environment you can
start writing the test cases. For illustrative purposes, we will be automating
the Android messaging app from Google. To reemphasize best practices, we
will utilize the page object model to create a cleaner and more modular
solution. Because we already discussed the page object model framework in
detail previously, we can save time by cloning the automation framework
project we used previously which you can find on github here.

Now let’s discuss the scenario which we want to automate. We have selected
the Google message application(v 3.9.039) for automation.

But before starting the automation we will need to plan our test. So as

per our above discussion, we need to take care of 2 things.

1) We need to quickly check the app feasibility for automation and to do
so we need to verify that the locators of the app are unique. Here we
will use uiautomatorviewer to find the unique locators of UI elements
as it is quick on Android compared to the Appium inspection tool.

Making the move to automation testing with Appium

237 www.kobiton.com www.kobiton.com

Figure-2: Quick check of locators on messaging app.

As you can see above, the button has a unique resource-id - The

Google developers have assigned unique ids to all UI elements, so the first
step is clear.

2) The Google message app is straightforward - you can explore the
whole application and can get an idea of each feature. As the
application is mainly designed to send an SMS to contacts we will
need to automate the most important scenario which is sending the
SMS to a particular contact.

Here are the manual steps we will perform and then use this to create the
automation:

No. Test Steps Expected Output

1 Open the google message application. An app should open.

2 Tap on ‘Start chat’ OR ’+’ button. New conversion screen should
appear.

Making the move to automation testing with Appium

238 www.kobiton.com www.kobiton.com

3 Type the contact no. in ‘To’ textfield. ‘Send to contact no.’ row should be
visible.

4 Tap on the suggested contact below
search box.(like ‘Send to 111-1111’)

Conversation screen should appear.

5 Type into the message textfield. A message should be typed
correctly.

6 Tap on ‘SMS’ button Message should be sent to the
recipient.

Now, both the conditions are satisfied so we can move forward and start

writing the automation test case. We will use the page object model framework for
writing the automation test case and using it involves just a few steps - it may seem
like overkill for this test case but we’re putting in a good baseline for a larger more
sophisticated automation project:

1) You can get the POM-based automation framework from our GitHub
page.

2) Import as gradle project in IntelliJ IDEA/Eclipse IDE.

3) Run the build.gradle file in order to download all dependencies.

4) Move to the configuration.properties file and change these

properties as per the connected Android device.
android.platform.version=<get android version of
device>
android.device.name=<get device name using $ adb
devices>

5) Set the proper desired capabilities.

6) Get the unique locators for UI elements on the app.

7) Create the page objects of different screens.

8) Write the automation test case using the created page object’s

methods.

Making the move to automation testing with Appium

239 www.kobiton.com www.kobiton.com

The First 4 steps are straight forward - now we get to the desired capabilities
part!

Set desired capabilities
Because the app we have chosen comes pre-installed on Android devices, we

can skip the installation and go straight to opening the app.

DesiredCapabilities desiredCapabilities = new
DesiredCapabilities();
desiredCapabilities.setCapability(MobileCapabilityType.AUTOMA
TION_NAME, "uiautomator2");
desiredCapabilities.setCapability(MobileCapabilityType.DEVICE
_NAME, "c4e3f3cd");
desiredCapabilities.setCapability(MobileCapabilityType.PLATFO
RM_NAME, "Android");
desiredCapabilities.setCapability(MobileCapabilityType.PLATFO
RM_VERSION, "8.0");
desiredCapabilities.setCapability(AndroidMobileCapabilityType
.APP_PACKAGE, "com.google.android.apps.messaging");
desiredCapabilities.setCapability(AndroidMobileCapabilityType
.APP_ACTIVITY,
"com.google.android.apps.messaging.ui.ConversationListActivit
y");
desiredCapabilities.setCapability(MobileCapabilityType.FULL_R
ESET, false);
desiredCapabilities.setCapability(MobileCapabilityType.NO_RES
ET, true);
desiredCapabilities.setCapability(AndroidMobileCapabilityType
.AUTO_GRANT_PERMISSIONS, true);

Here, we don’t use the
desiredCapabilities.setCapability(MobileCapabilityType.AP

P, <path-to-app>); capability because we are not installing the application.

Getting the unique locators
After setting the desired capabilities you need to extract the selectors using

uiautomatorviewer(or Appium inspector) for all the UI elements we need to control.

NOTE: The Google message application will change periodically so there are
chances that the element IDs may change over time, so please modify the
automation script accordingly.

There are 4 screens we need to take care of for automating our scenario:

Making the move to automation testing with Appium

240 www.kobiton.com www.kobiton.com

1) Messages (Dashboard) screen.
2) New conversation screen.
3) New conversation screen for a new contact.
4) Conversation screen.

Figure-3.1: Google message app: Message & New conversation screens.

Making the move to automation testing with Appium

241 www.kobiton.com www.kobiton.com

Figure-3.2: Google message app: New conversation & Conversation screens.

 After identifying the screens, we need to get the selectors of each element from all

screens which will be needed while automating our test case.

So let’s make a list:

Screen Name Element Locator

Messages ‘Start chat’ button ID: start_new_conversation_button
Or
ID:
com.google.android.apps.messaging:id/start_new_
conversation_button

New
conversation

‘To’ textfield ID: recipient_text_view

New
conversation

‘Send to 432-
5235’ textview

Not present on DOM, but we can skip this by
tapping on ENTER from keyboard.

Conversation SMS Message
textfield

ID: compose_message_text

Making the move to automation testing with Appium

242 www.kobiton.com www.kobiton.com

Conversation ‘SMS’ button ID: send_message_button_container

Conversation Sent Message
layout

XPath:
//android.support.v7.widget.RecyclerView/android.
widget.FrameLayout

NOTE: You can use the ID selector in these formats:

1) start_new_conversation_button
2) com.google.android.apps.messaging:id/start_new_conversation_butt

on

If you look at the above table closely you can notice that most of elements
have unique Ids, however a few elements have some issues with their id:

1) ‘Send to 432-5235’ textview is not present in DOM at all so we can’t
locate that element.

Figure-4: Selector of ‘Send to‘4325235’ textview is not present in DOM.

So, we need to look for a workaround. If you look closely at this

screen then you might figure out that you just have to press the ‘correct’
(green checkmark) icon on the keyboard and you don't need to press the
‘Send to 432-5235’ textview.

Making the move to automation testing with Appium

243 www.kobiton.com www.kobiton.com

Figure-5: Use Right Icon instead of ‘Send to 4325235’ textview.

We can click on the icon from the soft keyboard:

driver.pressKey(new KeyEvent().withKey(AndroidKey.ENTER));

2) The 2nd issue is there is no unique id assigned to the sent message

textview. So we need to look at another locator strategy. What about
using the accessibility id locator strategy? Unfortunately that would
only work if the id is static and here it keeps changing, so that strategy
won’t work either.

So the XPath locator strategy remains. It’s actually good practice to

use the text attribute in XPath but if you see the below screenshot you can
find that there is no text assigned to the sent message textview. So we will
need to use XPath as follows:

@AndroidFindBy(xpath =
"//android.support.v7.widget.RecyclerView/android.widget.Fram
eLayout")
List<AndroidElement> sentMessageLayout;

This game of finding the right locator strategy to use is very common

Making the move to automation testing with Appium

244 www.kobiton.com www.kobiton.com

in test automation. You’ll explore the elements and then go through a
process of trying to find what the best locator strategy is in order to reach
those elements.

You may be wondering why we have taken the List of
AndroidElement ? This is because the problem with the single
AndroidElement is if you have multiple messages sent to the same mobile
number it will always take the first element but we need the last element of
the sent message. Please see Figure-7: FrameLayout presents for each sent
message.

Figure-6: Id is not assigned to sent message textview.

Making the move to automation testing with Appium

245 www.kobiton.com www.kobiton.com

Figure-7: FrameLayout presents for each sent message.

Now that we have all the unique locators which we wanted, we can start

creating our actions in the PO classes.

Create action methods in PO classes
We need to create action methods on Page Object classes which will tap on

buttons, fill the text fields and assert text values on the app screen.

For example, on the Message(Dashboard) screen we need a method which
will tap on the ‘Start chat’ button. We already have the selector of the ‘Start
button’ so we can create our method:

public class MessagesPO extends BasePO {
 public MessagesPO(AppiumDriver driver) {
 super(driver);
 }

 @AndroidFindBy(id =
"com.google.android.apps.messaging:id/start_new_conversation_
button")
 AndroidElement startChatButton;
 public NewConversationPO tapOnStartChatButton() {
 startChatButton.click();
 return new NewConversationPO(driver);
 }

Making the move to automation testing with Appium

246 www.kobiton.com www.kobiton.com

}

Why does our tapOnStartChatButton() method return a new object of
NewConversationPO? The answer is that whenever any method is
responsible to change the screen we can return the object of the subsequent
screen’s PO class so that we don’t need to create the object of that PO class
separately while writing test case.

Here, the method tapOnStartChatButton() will tap on ‘Start chat’
button which will navigate to the New Conversation screen so we are
returning the object of NewConversationPO class.

This practice is not mandatory but it is good to have.

NOTE: All PO class should extend the BasePO class as it contains the logic
which initializes the page factory and other utility classes. You can look into
the chapter titled: “Developing Test Automation Framework for Appium using
Page Object Modeling(POM)“ for more details.

We have created the below table which gives the mapping between screen
names and corresponding method names.

Screen Name Method Name

Messages tapOnStartChatButton(): It will tap on Start chat button.

New conversation typeAndSubmitContactNumber(String contactNo): It will type the
contact no. and submit it for conversation.

Conversation typeInSMSTextField(String text): This method will type into message
textfield.
tapOnSMSButton(): This method will tap on the SMS button.
isConversationScreenDisplayed(): This method is used to verification
purpose, it will return true if conversation screen appears.
getLastSentMessage(): It will return the AndroidElement for last sent
message.
getLastSentMessageText(): This method is used to get the last sent
message text.
isMessageSent():It will verify that message is sent or not.
isLastSentMessageContains(String subString): This method will
check whether last sent message contains the passed subString or
not.

Create the test case and use action methods from PO classes
This is the final and easiest, yet most powerful, step of automation test case

Making the move to automation testing with Appium

247 www.kobiton.com www.kobiton.com

writing. Here you have to organize all the methods from your PO classes in
order to make the complete automation test case and validate the result
using assertions.

Assertions are fundamental in test case writing - without them you’re just
doing automation, and not automated testing. Ideally, you would put as
many assertions as you can. Assertions can be thought of as checkpoints. At
the end of any action method you will have some expected results, and to
measure those expected results you have to put assertion statements in the
code.

In our example we are using the TestNG assertions.

Assertions simply compares the value of expected and actual values. If the
expected and actual values are equal then the assertion ‘passes’ and we
continue with code execution. If it fails (the actual result does not match the
expected result) the user defined message is thrown.

In our example we have 2 assertions:

1) Verify that the message has been sent to the user:

Here we want to check that the application has sent the message and
is being displayed on the conversation screen.

Assert.assertTrue(conversationPO.isMessageSent(), "Message:'"
+ messageText + "' is not being sent!");

The 2nd parameter is the error message we want to throw in case of
failure of the assertion. A good error message should give sufficient
information about what it is checking, so that your diagnostics
becomes easier.

2) Verify that sent message is as per expectations:

Checking that the message is sent is one thing … but was the right
message sent? As discussed earlier there is no unique id assigned to
the sent message text view, so we can not get the text of the last
message. We can however get the whole FrameLayout text.

So logically we can have an assertion which will check that the
expected text is present on the last sent message or not. In our
example, we have put the timestamp in milliseconds in a text
message and we will verify that given timestamp text value is present
on last sent message or not.

Making the move to automation testing with Appium

248 www.kobiton.com www.kobiton.com

Assert.assertTrue(conversationPO.isLastSentMessageContains
(timestamp), "Last sent message is different than expected!,
Original message is: '" +
conversationPO.getLastSentMessageText() + "', while the
expected substring is: " + timestamp + "'");

After organizing the action methods from the PO and adding our
assertions we have our complete test case which will send the
message to a particular contact number.

public class TestCases extends BaseTest {

 @Test
 public void verifyUserCanSendMessage() {
 final String phoneNo = "00011122233";
 final String timestamp = System.currentTimeMillis() +
"";
 final String messageText = "Hello, there. Current
time is: " + timestamp;

 MessagesPO messagesPO = new
MessagesPO(androidDriver);

 NewConversationPO newConversationPO =
messagesPO.tapOnStartChatButton();

 ConversationPO conversationPO =
newConversationPO.typeAndSubmitContactNumber(phoneNo);
 Assert.assertTrue(conversationPO.
isConversationScreenDisplayed(), "Conversation screen didn't
appear!");
 conversationPO.typeInSMSTextField(messageText);
 conversationPO.tapOnSMSButton();

 Assert.assertTrue(conversationPO.isMessageSent(),
"Message:'" + messageText + "' is not being sent!");

Assert.assertTrue(conversationPO.isLastSentMessageContains
(timestamp), "Last sent message is different than expected!,
Original message is: '" +
conversationPO.getLastSentMessageText() + "', while the
expected substring is: " + timestamp + "'");
 }

 @BeforeTest
 @Override
 public void setUpPage() throws MalformedURLException {

Making the move to automation testing with Appium

249 www.kobiton.com www.kobiton.com

 androidDriver = new AndroidDriver(new
URL(APPIUM_SERVER_URL), getDesiredCapabilitiesForAndroid());
 }

}

The full code is available on github here.

As we said at the outset, this app may have changed by the time this guide was
published. A new UI could render some of our test cases invalid. We have however
tried to lay out a methodical and disciplined approach to tackling any test
automation project. You should be to apply this approach for any mobile application.

Making the move to automation testing with Appium

250 www.kobiton.com www.kobiton.com

Chapter-15: Test Automation
Design Patterns You Should
Know
Design patterns are used extensively when programming and they generally offer a
reusable solution to a known occurring problem. In many respects, they introduce a
set of best practices into your code and usually result in more flexible and
maintainable code.

Strictly speaking, design patterns are optional. There are many ways to code a
solution. Your organization may enforce certain patterns precisely because of
maintainability. Although optional, knowledge of various design patterns and
knowing when to use them will improve your skills in test automation design. And
that’s what we’re going to do in this chapter.

We already looked into one the best test automation design patterns - the Page
Object Model - in the Developing a test automation framework using appium
chapter. But there are many other framework patterns out there used by
automation teams, and that’s what we will explore in this chapter. Be forewarned
though, this is quite a technical chapter. A suggested approach may be to skim
through the content and then revisit it a second time in more detail.

1) Page Object Model(Pattern)
The Page Object Model is a widely used object design pattern for structuring
automation test code. Here, pages in the app are represented as Classes, and
various UI elements of that pages are defined as variables. We already have gone
through this technique in detail previously, so here we will discuss the abstract
structure and explore how it can be implemented in a slightly different way or in
a different programming language.

Making the move to automation testing with Appium

251 www.kobiton.com www.kobiton.com

Figure-1: Page Object Pattern.

We use the Page Factory class to initialize the mobile(web for web application)
elements that are defined in Page Object(PO) classes.

PO classes containing the mobile elements needs to be initialized using the Page
Factory before it can be used, and this can be achieved by simply calling the
initElements function of PageFactory. In that method you need to initialize the
AppiumFieldDecorator class by passing the Appium Driver and Implicit wait
duration objects.

PageFactory.initElements(new AppiumFieldDecorator(driver,
Duration.ofSeconds(IMPLICIT_WAIT)), this);

Or you can put the code in the constructor of the BasePO class.

Page Factory will initialize every MobileElement(AndroidElement or IOSElement)
variable with a reference to a relevant element on the actual mobile screen and
this is achieved by using @FindBy annotations. This annotation allows us to not
only retrieve the mobile element, but also information such as the locator
identifying strategy name and the locator value for retrieving it:

@iOSFindBy(accessibility = "Toolbar Done Button")
IOSElement doneButtonOnKeyboard;

Whenever the above code is used, the driver object will find it on the current
mobile screen and simulate the action.

With this pattern, you will need to design a Page Object class according to the
particular screen you wish to automate. For example, for the Login screen you

Making the move to automation testing with Appium

252 www.kobiton.com www.kobiton.com

can create a LoginPO class and can put all the UI element locators as variables
iin the LoginPO class. And don’t forget that every PO class will extend the
BasePO class where we are calling the PageFactory initElements method in the
constructor.

In the Page Object Pattern all the locators will be reside in the relevant Page
Object Classes such as LoginPO, RegisterPO, DashboardPO etc.. and the
method from that PO classes gets used by the Test Classes - and this is the main
advantage to using the Page Object pattern as locators and tests are residing in
different places. So whenever any UI locator is changed you just need to apply
changes on the particular Page Object classes to fix the automation script. This is
the primary reason why the Page Object pattern is so widely used in automation
projects.

2) Factory Design Pattern
In the factory design pattern we have a super class with multiple subclasses and
based on some input, we need to return a particular subclass. It is often used
when a class cannot anticipate the type of objects it needs to create beforehand.
Here, instantiation of a class is done from the factory class. So when we need to
create the object based on particular input this pattern is used. So how does it
relate to automation test design?

This design pattern is best suited to when you are working with Android and iOS
and both having the same accessibility id on iOS and content-desc in Android. So
here the Factory class will create the relevant driver object (either Android or
iOS) and always returns a newly created object or re-initialized one, so you don’t
have to check the platform every time.

Example:
We have implemented a factory class that creates a Driver object based on a
specific input(platform name). This factory is very simple but it is perfect fit for
our purpose.
You can design the factory class and it’s methods for more complex applications.

Making the move to automation testing with Appium

253 www.kobiton.com www.kobiton.com

Figure-2: DriverFactory Class.

As you can see above, we have created one method getDriver(String
platfromType) on the DriverFactory class. So according to the platform
type this method will return the particular AppiumDriver. This factory is used to
instantiate AppiumDriver in tests based on the external parameter.

AndroidDriver driver = new
DriverFactory().getDriver("Android");
driver.findElement(By.id("username")).sendKeys("john");
driver.findElement(By.id("password")).sendKeys("abc123");
driver.findElement(By.id("login")).click();
MobileElement profileIcon = (MobileElement)
driver.findElement(By.id("profileIcon"));
Assert.assertTrue(profileIcon.isDisplayed(), "Login was not
successful.");

3) Facade Pattern
The Facade pattern provides a simple interface to deal with complex code.

In the facade pattern, as applied to test automation, we design the facade class
which has methods that combine actions executed on different pages.

It is best to understand by looking at a practical example:

Making the move to automation testing with Appium

254 www.kobiton.com www.kobiton.com

Figure-3: Sample Login Application.

Here we are going to automate a simple workflow using the facade pattern, like
first login to the application and move to the dashboard page, and from there
logout.

The Facade pattern is just an extension of the Page Object pattern, so basically in
order to automate the above scenario we need to create page objects for
different screens, so here we need to create 2 PO classes:
1) LoginPO
2) DashboardPO
Now we need to create one additional class, LoginFacade, which contains the
objects of PO classes and it also contains the business logic using those objects.
So the advantage of facade is you don’t have to deal with the PO classes
individually in your test script, you just need to use the facade class.

Making the move to automation testing with Appium

255 www.kobiton.com www.kobiton.com

Figure-4: Facade Pattern.

LoginPO - It contains the method of login to the application.

DashboardPO - It contains a logout() method.

LoginFacade - It has LoginPO and DashboardPO objects defined and method
loginAndLogout() also added, so you don’t have to call all PO methods, you
just have to deal with Facade class methods which are internally calling PO
methods. This type of automation framework is really useful when you are
dealing with complex app and you have many POs defined.

LoginFacade.java

public class LoginFacade {

 private AppiumDriver driver;
 private LoginPO loginPO;
 private DashboardPO dashboardPO;

 public LoginPO getLoginPO() {
 if (loginPO == null) {
 loginPO = new LoginPO(driver);
 return loginPO;
 } else
 return loginPO;
 }

Making the move to automation testing with Appium

256 www.kobiton.com www.kobiton.com

 public DashboardPO getDashboardPO() {
 if (dashboardPO == null) {
 dashboardPO = new DashboardPO(driver);
 return dashboardPO;
 } else
 return dashboardPO;
 }

 public void loginAndLogout(String username, String
password) {
 getLoginPO().setUsernameTextField(username);
 getLoginPO().setPasswordTextField(password);
 getLoginPO().tapOnLoginButton();
 getDashboardPO().tapOnLogoutTextView();
 }
}

So as you can see in above example you only have to use the
loginAndLogout() method in order to do login and logout without
depending on other PO classes.

Now in case any workflow changes in your test cases you just need to change it
in one place, and if you want to add some additional business logic, you can
directly add them to the facade class.

For large and complex applications, If you don't use facade pattern then it’s
totally fine, but you may face some complexity in your automation framework
and your code may ultimately become unwieldy.

You can find the complete project on our github project.

4) Singleton Pattern

A Singleton class means only one instance of it can exist at any time.

But why would you need this?

Well it is very useful in a case when you need to use the same object across the
whole framework. A Singleton class returns the same instance every time you try

Making the move to automation testing with Appium

257 www.kobiton.com www.kobiton.com

to instantiate an instance of the class. Think of it providing global access to a
single object, for example, the log file object.

Creating a singleton class consists of:

1) Making the constructor of the Class private.
2) Make a static reference of the class, as we want to make this available

globally.
3) Make a static method which returns an object of type class and it should also

check whether class is already instantiated once or not - if it’s not
instantiated then it should instantiate that otherwise it can return reference
of the class directly.

Sample of SingletonClass:

public class SingletonClass {
 public static SingletonClass singletonClass;

 private SingletonClass() {
 System.out.println("Singleton Class object
created.");
 }

 public static SingletonClass getSingletonClass() {
 if (singletonClass == null) {
 singletonClass = new SingletonClass();
 }
 return singletonClass;
 }

 public static void main(String[] args) {
 SingletonClass sc1 =
SingletonClass.getSingletonClass();
 SingletonClass sc2 =
SingletonClass.getSingletonClass();
 }
}

Output:

Singleton Class object created.

Making the move to automation testing with Appium

258 www.kobiton.com www.kobiton.com

In above example we have created a Singleton class and we have defined two
objects which are instantiating the SingeltonClass two times but as you can see in
the output, the SingletonClass instantiates only once, after that it will re-use the
created instance.

Now let’s discuss how we can leverage this in Automation.

The Singleton pattern in automation can help us in many ways including:

1) We can ensure a single driver instance is used throughout our test cases.
2) Loading test data or other files just once rather than loading them

repeatedly.

So whenever you feel that particular objects should only be instantiated once,
you need to use the Singleton pattern. For example if a properties file in java is
loaded once you don’t want to load it again every time, consuming memory and
resources. Using the singleton pattern you can do just that.
In the following example we will create a Singleton class to create the
AppiumDriver(for iOS) only once.

SingletonAppiumDriver:

public class SingletonAppiumDriver {

 public static SingletonAppiumDriver
singletonAppiumDriver;
 private AppiumDriver appiumDriver;
 public String appiumURL =
"http://127.0.0.1:4723/wd/hub";

 private SingletonAppiumDriver() {
 appiumDriver = new IOSDriver(new URL(appiumURL),
getDesiredCapabilitiesForIOS());
 }

 private DesiredCapabilities
getDesiredCapabilitiesForIOS() throws
MalformedURLException {
 // set desired capabilities for iOS
 return desiredCapabilities;
 }

Making the move to automation testing with Appium

259 www.kobiton.com www.kobiton.com

 public static SingletonAppiumDriver
getSingletonAppiumDriver() throws MalformedURLException {
 if (singletonAppiumDriver == null)
 singletonAppiumDriver = new
SingletonAppiumDriver();
 return singletonAppiumDriver;
 }

 public AppiumDriver getAppiumDriver() {
 return appiumDriver;
 }
}

Using this Singleton class we can create test cases which will reuse the
appiumdriver object instead of creating a new one every time.

IOSTestCase:

public class IOSTestCase {
 @Test
 public void sampleTestCase1() throws
MalformedURLException {
 int a = 9;
 int b = 1;

 SingletonAppiumDriver singletonAppiumDriver =
SingletonAppiumDriver.getSingletonAppiumDriver();
 AppiumDriver driver =
singletonAppiumDriver.getAppiumDriver();

 driver.findElement(By.id("IntegerA")).sendKeys(a +
"");
 driver.findElement(By.id("IntegerB")).sendKeys(b +
"");

driver.findElement(By.id("ComputeSumButton")).click();
 String answer =
driver.findElement(By.id("Answer")).getText();
 Assert.assertEquals(answer, a + b + "", "Expected
and Actual Result didn't match!");

Making the move to automation testing with Appium

260 www.kobiton.com www.kobiton.com

 }

 @Test
 public void sampleTestCase2() throws
MalformedURLException {
 int a = 1;
 int b = 1;

 SingletonAppiumDriver singletonAppiumDriver =
SingletonAppiumDriver.getSingletonAppiumDriver();
 AppiumDriver driver =
singletonAppiumDriver.getAppiumDriver();

 driver.findElement(By.id("IntegerA")).sendKeys(a +
"");
 driver.findElement(By.id("IntegerB")).sendKeys(b +
"");

driver.findElement(By.id("ComputeSumButton")).click();
 String answer =
driver.findElement(By.id("Answer")).getText();
 Assert.assertEquals(answer, a + b + "", "Expected
and Actual Result didn't match!");
 }
}

You can see the full project on our github project.

5) Fluent Page Object Model Pattern
As you already know, the Page Object model is the the best framework to use on
automation projects. However, it be simplified and made even more readable
using the Fluent Page Object Model.

In the fluent page object pattern every method which is responsible to perform
an action returns “this” in order to implement chaining methods for the business
logic of the test.

But please note that doesn’t mean we never return the other screen PO class.
Please refer to this example:.

LoginPO.java

Making the move to automation testing with Appium

261 www.kobiton.com www.kobiton.com

public class LoginPO extends BasePO {
...
...
 public LoginPO setUsernameTextField(String username) {
 usernameTextField.sendKeys(username);
 return this;
 }

 public LoginPO setPasswordTextField(String password) {
 passwordTextField.sendKeys(password);
 return this;
 }

 public DashboardPO tapOnLoginButton() {
 loginButton.click();
 return new DashboardPO(driver);
 }
...
...
}

TestCases.java

public class TestCases extends BaseTest {

 @Test
 public void testUserCanLoginAndLogout() {
 String username = "pratik";
 String password = "test123";

 LoginPO loginPO = new LoginPO(driver);

 loginPO.setUsernameTextField(username).
 setPasswordTextField(password).
 tapOnLoginButton().
 tapOnLogoutTextView();

 Assert.assertTrue(loginPO.isLoginPageDisplayed(),
"Login Page did not appear after logout");
 }

Making the move to automation testing with Appium

262 www.kobiton.com www.kobiton.com

}

In above example you can see that methods setUsernameTextField and
setPasswordTextField are returning “this” while method
tapOnLoginButton is returning the DashboardPO. So we are not forcing
every method to return “this” object of it’s own class since it is not a practical
approach.

One this is implemented, the chained method call is far more elegant:

loginPO.setUsernameTextField(username).
 setPasswordTextField(password).
 tapOnLoginButton().
 tapOnLogoutTextView();

You can find this example on our github page.

For those that are interested, there are many other design patterns. Most of these
are used extensively in software development, but arguably less so in test case
automation:

1) Observer Design Pattern
2) Observer Design Pattern via Events and Delegates
3) IoC Container and Page Objects
4) Strategy Design Pattern
5) Advanced Strategy Design Pattern

You can learn more about these patterns on: https://dzone.com/articles/design-
patterns-in-automation-testing

As we said on the onset, using design patterns is optional from a purely technical
perspective and there are many ways to implement a solution. The more complex
your environment, the more likely you are to benefit from the rigor imposed by
design patterns. Also, many people new to test automation are intimidated at using
design patterns. Our recommendation is to get comfortable with appium and test
automation first, and then slowly expand your knowledge by incorporating design
patterns.

Making the move to automation testing with Appium

263 www.kobiton.com www.kobiton.com

Chapter 16 - Industry
Viewpoints

In this chapter we have the privilege of getting some thoughts on the state of QA
from industry leaders. It is a great way of concluding this book and leaving you
with different perspectives.

Our panel of experts include:

● Patrik Patel
● Paul Grizzaffi
● Mush Honda

Pratik Patel

Pratik is one of the primary authors of this book. He shares his thoughts on the
mobile application testing market:

The mobile application testing service market is gaining traction as
companies are recognizing the importance of automated testing as an
essential requirement to improve product quality in an increasingly time-
sensitive environment.

The rapid advancement of technology is having a significant impact in the
world of automated testing, and companies have more choices then ever
before. The strides made in machine learning, data science and artificial
intelligence are making their way into automation testing tools.

And it isn’t just technology advancement - QA and automation testing is
becoming a fundamental part of DevOps processes and Agile
methodologies. Companies are introducing automation earlier and more
frequently. Testing early and testing often has a much lower cost than
defects discovered later in the cycle.

Moving beyond automated tests, exciting areas in testing include proactive
defect prediction. Technologies such as machine learning, reinforcement
learning, neural networks, cognitive computing, robotics process

Making the move to automation testing with Appium

264 www.kobiton.com www.kobiton.com

automation and bot programming are giving rise to an exciting
advancement in testing. Technology can analyze source code, user
behavior, app structure etc and predict high-risk areas that should be
tested, and even predict where defects may be occuring.

Even Appium is benefiting from these technologies. We already see more
AI libraries helping with locators and classification.

Regardless of the technology used, the reality is that automation is a critical
part of a testing portfolio in order for companies to stay competitive.
Whether it is to improve quality or lower the time to market, automation is
the strategy to enable this. The modern tester should be very comfortable
with technology. Automation is the future, and test engineering will
become more prominent.

About Pratik: Pratik is an automation engineer with significant experience
working in the QA Automation Industry and has extensive Selenium and Appium
experience. He has worked on giant automation test frameworks(at Cybage
Software Pvt. Ltd., Gandhinagar) which was capable of executing 4500 UI test
cases parallely - all built on Selenium, TestNG, Docker and Gradle. Recently he
has worked as an automation expert for a cloud based mobile automation
platform. Moreover he has experience working with Espresso, XCUITest, Katalon
Studio, RanoRex Studio, Appium Studio and cloud base automation platforms
such as Kobiton, Perfecto Mobile, Saucelabs, Browserstack and AWS Device
Farm.

Paul Grizzaffi

There are two points that I'd like to see the automation discipline embrace.
The first is to evaluate automation endeavors with business lenses. That is
to say, let's not automate just because we "are agile" or because we are
"doing Scrum". We should only automate when there is value. If there is no
value in automating for every work item, then don't automate for every
work item. If there is a higher value in creating scripts to generate data
than there is to create traditional smoke test scripts, then build the data
generation scripts first. I challenge the discipline to be more responsible in
how we spend our automation dollars.

Secondly, I challenge the tool vendors to focus more on reducing the effort
of automation maintenance as opposed to reducing the time it takes to

Making the move to automation testing with Appium

265 www.kobiton.com www.kobiton.com

create an automation script. While reducing the speed of automation
creation is certainly valuable, historically, I find that the cost of
maintenance eclipses the cost of creation. In my experience, tool vendors
focus on the speed and the ease of creation while largely ignoring the
challenge of maintenance. Fortunately, I'm seeing that change with some
vendors, but I'd like to see "lowering the cost of maintenance" on the sales
sheets for more vendors.

About Paul: As a Principal Automation Architect at Magenic, Paul Grizzaffi is
following his passion of providing technology solutions to testing and QA
organizations, including automation assessments, implementations, and through
activities benefiting the broader testing community. An accomplished keynote
speaker and writer, Paul has spoken at both local and national conferences and
meetings. He is an advisor to Software Test Professionals and STPCon, as well as
a member of the Industry Advisory Board of the Advanced Research Center for
Software Testing and Quality Assurance (STQA) at UT Dallas where he is a
frequent guest lecturer. Paul enjoys sharing his experiences and learning from
other testing professionals; his mostly cogent thoughts can be read on his blog at
https://responsibleautomation.wordpress.com/.

Mush Honda

Test Automation should be viewed as an enablement tool for testers; tools
such as appium help testers automate the mundane, repetitive checks that
must be performed. However, the automated checks done are only as good
as the tester who creates these tests; therefore, it is very important to
ensure that testers are continuously evolving and learning new methods of
testing, as well as performing a deep-dive into the domain of the
application under test.

It is very important that testers learn and apply automation tools as part of
their testing strategy, since the market demands are simple: Deliver faster,
with quality! With the rapid adoption of Continuous Delivery, it is very
important that testers apply automation tools to supplement the business
assurance testing that is being performed; again, testers should not simply
focus on being experts with tools only, they should also be learning to
becoming better testers (by learning domains, new testing concepts, etc).

Making the move to automation testing with Appium

266 www.kobiton.com www.kobiton.com

The testing industry is at a very exciting stage, where it has great support
from AI/ML based tools, as well as acknowledgement from the business
teams that have realized the important role that testers (and testing) play:
we help deliver software with HIGH CONFIDENCE, whether it is for an
enterprise’s digital transformation or a startup’s MVP into the consumer’s
hand!

About Mush: Mush is a leading expert in the testing industry known for his
practice leadership, solutions development and cross-industry expertise. During
his career tenure, he has worked with applications in insurance, healthcare,
speech analytics and financial services. Further, he has a proven track record of
creating, modifying, and innovating on test solutions and bringing them
successfully to market. Mush has been featured in several leading industry
publications as a thought leader on topics in the QA industry. Mush Honda is the
Vice President of Testing at KMS Technology, Inc. He is a driven IT leader with
over 15 years of experience in software testing and practice management

Making the move to automation testing with Appium

267 www.kobiton.com www.kobiton.com

Index

@	

@AfterMethod	·	142	
@BeforeMethod	·	142	

A	

Accessibility	ID	·	78	
adbPort	·	63	
Android	Studio	·	15	
Android	UiAutomator	·	87	
Android	View	Tag	·	88	
androidCoverageEndIntent	·	62	
androidDeviceReadyTimeout	·	62	
androidDeviceSocket	·	63	
androidInstallPath	·	63	
androidInstallTimeout	·	63	
app	·	59	
appActivity	·	61	
Appium	Desktop	Application	·	89	
Appium	Inspector	·	89,	90	
appPackage	·	61	
appWaitActivity	·	62	
appWaitDuration	·	62	
appWaitPackage	·	62	
Attach	to	existing	Session	·	99	
autoGrantPermission	·	74	
Automating	Gestures	·	196	
automationName	·	58	
autoWebview	·	60	
avd	·	63	
avdArgs	·	64	
avdLaunchTimeout	·	63	
avdReadyTimeout	·	64	

B	

browserName	·	59	

C	

Class	Name	·	80	
Conditional	synchronization	·	152	

D	

Desired	Capabilities	·	54	
deviceName	·	59	
deviceReadyTimeout	·	62	
disableAndroidWatchers	·	73	

E	

Element	extraction	·	91	
emulators	·	161	
enablePerformanceLogging	·	61	
eventTimings	·	60	
Explicit	wait	·	152	

F	

Fluent	wait	·	152,	157	
fullReset	·	60	

G	

Gradle	·	40	

I	

Image	·	87	
Image	comparison	·	221	
Image	Comparison	·	87	
Implicit	wait	·	152	
Installation	·	13	
IntelliJ	IDEA	·	32	
IOS	UIAutomation	·	88	

K	

keystorePassword	·	64	
keystorePath	·	64	
Kobiton	·	175,	181	

L	

language	·	60	
LinkText	·	107	
locale	·	60	
Locator	strategy	·	77	
Locators	·	77	

N	

newCommandTimeout	·	59	
noReset	·	60	

Making the move to automation testing with Appium

268 www.kobiton.com www.kobiton.com

O	

OpenCV	·	222	
orientation	·	60	

P	

Page	Object	Modeling	·	122	
Parallel	testing	·	162	
Partial	LinkText	·	107	
platformName	·	58	
platformVersion	·	58	
printPageSourceOnFindFailure	·	61	

R	

remoteAdbHost	·	63	
Reset	strategies	·	73	

S	

synchronization	·	151	

systemPort	·	63	

T	

TestNG	·	161	

U	

udid	·	60	
UiAutomatorViewer	·	112	
Unconditional	synchronization	·	151	
useKeystore	·	64	

W	

WDA	·	172	

X	

XPath	·	85,	106	

---THE END---

