I APPIUM STEP-BY-STEP GUIDE

MAKING THE
MOVE TO
AUTOMATION
TESTING WITH
APPIUM

Including viewpoints from industry leaders
Paul Grizzaffi, Jonathan Lipps, Mush Honda
and Patrik Patel




Making the move to
automation testing with
Appium

A COMPREHENSIVE INTRODUCTION TO MOBILE TEST AUTOMATION

Kobiton, Inc.
Atlanta, GA

2 www.kobiton.com



Copyright © 2019 Kobiton, inc.

All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means, including photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher, except in the case of brief quotations embodied
in critical reviews and certain other noncommercial uses permitted by copyright law. For permission
requests, email the publisher, addressed “Attention: Permissions Coordinator,” at the address below.

www.kobiton.com
marketing@kobiton.com

Ordering Information:

Printed copies or Quantity sales. Printed versions of this book are available. Contact us for details
Special discounts are available on quantity purchases by corporations, associations, and others. For
details, contact the us at the address above.

Making the Move to Automation Testing with Appium — 1st ed.

ISBN Pending
Technical/Testing

3 www.kobiton.com



Table of Contents

Forward

Introduction

Chapter-1: Setting Up Your Testing Environment
Installation on Windows
Install the JDK software and set JAVA_HOME
Install Android Studio and set ANDROID_HOME
Installation of Node.js
Installation of Appium desktop server
Installation on Mac
Install the JDK software
Install Android Studio & Android SDK
Set JAVA_ HOME & ANDROID_HOME
Installation of Node.js
Installation of the Appium desktop server
XCode with Appium libraries setup

WebDriverAgentRunner setup(Setting up iOS real devices tests with
XCUITest)

Automatic configuration
Manual configuration
Installation on Ubuntu(Linux)
Install JAVA(JDK/JRE) & set JAVA_HOME
Install Node.js without using sudo
Install Android Studio
Install Appium globally:
Install appium-doctor to troubleshoot the errors if any using

Chapter-2: Writing Your First Test Case
Setup the IDE (IntelliJ IDEA)
Installation of IntelliJ IDEA
Install the TestNG plugin on Intelli) IDEA
Create your first automation test case
Create new project
Setup the automation case
Android
i0S

Chapter-3: Understanding the Desired Capabilities

4 www.kobiton.com

11

13
13
13
15
15
16
17
17
18
18
19
19
20

21
21
23
27
28
28
29
29
30

31
32
32
34
36
36
40
43
48

54



Desired capabilities for iOS and Android
Mobile web - Android
Mobile web - i0S
Mobile native - Android
Mobile native - iOS

List of all capabilities
General capabilities
Android capabilities
iOS capabilities

Important capabilities
Reset strategies
Android-specific capabilities
i0S-specific capabilities

Chapter-4: Appium Locator Finding Strategies
Accessibility ID
Class Name
ID
Name
XPath
Image
Android UiAutomator (UiAutomator2 only)
Android View Tag (Espresso only)
10S UlAutomation

Chapter-5: The Appium Inspector

56
56
57
57
57
58
58
61
68
72
72
73
74

76
77
79
81
83
84
86
86
86
87

88

Different element inspector tools that helps you to identify elements in mobile

app
Element extraction on mobile native applications using Appium Inspector
Comparison between iOS & Android locator strategy
Android
i0S
Element extraction on a mobile web browser
ID
Name
Class Name
CSS Selector
XPath
LinkText and Partial LinkText
Mobile browser automation - Sample test case

5 www.kobiton.com

89

90
100
100
101
101
102
103
103
104
105
106
106



Android 107

i0S 108
Chapter-6: Walkthrough of UlAutomator for Android and Accessibility Inspector
for iOS for Element Extraction. 111

1. UiAutomatorViewer: 111
2. Accessibility Inspector: 115
Chapter-7: Developing a Test Automation Framework for Appium using Page
Object Modeling(POM). 120
Page Object Modeling(POM) 121
Fixing the locator when the application changes 147

Open the particular page object class 147

Get the new locator 148

Change the locator 148
Chapter-8: Test Synchronization 150

1) Unconditional synchronization 150
2) Conditional synchronization 151

Implicit wait 151

Explicit wait 153

Fluent wait 155

Synchronization in our automation framework (WaitUtils.java) 156
Chapter-9: Parallel Test Execution on Simulators and Emulators. 160
TestNG 160
Creation of testng.xml 163
Manually create testng.xml 163

Manually create testng.xml 165

How to run the testng.xml? 169

1) Parallel execution of tests on iOS simulators 170

2) Parallel execution of tests on real iOS devices 174

3) Parallel execution of tests on Android emulators 176

4) Parallel execution of tests on real Android devices 177
Chapter-10: Test Execution on Real Devices Using Kobiton 180
Introduction to Kobiton 180

Rich test logs for true Root Cause Analysis 181

Integration with your favorite tools 181

Powerful APIs 181

Manual, Automated and Parallel testing supported 181

Step-by-step guide 182

6 www.kobiton.com



Execute test cases on a Mobile Browser 192

Chapter-11: Automating Gestures 195
Tap on element 198
Tap on x, y coordinates 199
Press an element for a particular duration 199
Press x, y coordinates for a particular duration 200

Automating swipe actions 200
Horizontal swipe: Using start and end percentage of 202
the screen height and width 202
Vertical swipe(scroll): Using start and end percentage of the screen height and
width 204
Drag(swipe) one element to an another element 206
MultiTouch 207

Chapter-12: Appium Tips and Tricks 209
1) How to check whether an Android app is already installed or not? 209
2) How to enable mouse pointer location on Android at runtime ? 210
3) How to capture Screenshots On Test Failure? 211
4) How to dismiss dialogs/alerts automatically ? 212
5) How to handle notifications in Android? 212
6) How to make test cases fail fast in order to quickly get an error message? 213
7) How to handle the hide_keyboard() method? 214
8) How can you write test cases faster? 214
10) How to handle to mobile data, wifi and airplane mode in Android? 215
11) How to switch context? 215
12) How can you minimize and reopen the app again? 216
13) How to start Appium Server programmatically? 216

Chapter-13: Image Comparison Using Appium 220
Setup and Linking OpenCV with Appium 221

Install Appium CLI 221

Install the OpenCV library 222

Link the OpenCV library with Appium 223
Using the Image comparison feature in automation 224

Image Comparison Automation Test Case 225
Using Image Comparison to Locate an Element 228

Get the image file of the button 229

Get the element using the image 230

Click on the element 230

7 www.kobiton.com



Image matching: Find occurance of partial image in the full image 231

Chapter-14: End-to-End Testing 234
Setting up Appium 234
Test Planning 234
Test Environment Setup 235
Test Case Writing 236

Set desired capabilities 239
Getting the unique locators 239
Create action methods in PO classes 245
Create the test case and use action methods from PO classes 246

Chapter-15: Test Automation Design Patterns You Should Know 250
1) Page Object Model(Pattern) 250
2) Factory Design Pattern 252
3) Facade Pattern 253
4) Singleton Pattern 256
5) Fluent Page Object Model Pattern 260

Chapter 16 - Industry Viewpoints 262
Pratik Patel 263
Paul Grizzaffi 264
Mush Honda 265

8 www.kobiton.com



Forward

In recent years the prevalence of mobile testing has increased
dramatically, just like we expected it would from observations of
the mobile ecosystem. Mobile test automation is still a young art,
and there are many pitfalls in pursuit of useful and reliable
automation systems.

There is therefore a huge need at the present time for
comprehensive instruction, especially for those who are
transitioning to mobile testing from web or desktop testing.

While there are an overwhelming number of similarities between
these practices, the world of mobile testing comes with its own
prerequisites for understanding, and these are often ignored by
newcomers.

This book is a welcome addition to the expanding set of resources
available to the new mobile tester.

-- Jonathan Lipps, Founding Principal, Cloudgrey.io

About: Jonathan Lipps has been making things out of code as long as he can
remember. Jonathan is an Appium lead maintainer and architect and founding
principal of Cloud Grey, the mobile automation consultancy. Before founding Cloud
Grey, he was Director of Open Source at Sauce Labs. He has worked as a
programmer in tech startups for over a decade, but is also passionate about
academic discussion in various fields. Jonathan has master's degrees in philosophy
and linguistics, from Stanford and Oxford respectively. Jonathan lives in Vancouver,
Canada.

9 www.kobiton.com



Welcome

10

Mobile test automation is more important than ever. Companies
have embraced a "mobile-first" philosophy, and customers are
more demanding than ever. Delivering perfect mobile
experiences is no longer optional. It's imperative.

This makes it an exciting time to be a mobile test automation
engineer. They’re in high-demand and often working on high-
visibility projects.

Appium is by far the most used and widely adopted test
automation framework for mobile. And for good reason. Its
maturity and open-sourced approach has led to a large community
of Appium users who continue to improve the product.

It is our hope that this book will serve as a comprehensive guide,
taking you from Appium Newbie to Appium Expert.

As with any undertaking as large as writing this guide, we
anticipate errors slipping through the editing process, or
inaccuracies based on ever-changing technology. If you spot
something that doesn’t seem right, please email us at
marketing@kobiton.com. We welcome all comments!

Enjoy your journey!

www.kobiton.com



Introduction

Congratulations on taking the first step to automated mobile testing with Appium.
We're excited to have you with us on this journey.

With most organizations adopting a ‘mobile-first’ policy and the increasing criticality
that mobile devices play in our everyday lives, the importance of rigourous mobile
testing is as important than ever.

And with the increasing pressure to release more, faster and with better quality,
companies need to integrate automated testing into their Quality Assurance process.
A task often made more difficult thanks to the fragmented mobile ecosystem
requiring development and testing across many different device and operating
system combinations.

There are plenty of testing tools out there to test app functionality (Especially User
Interface testing) of these hybrid, mobile web, and native mobile applications.

So why Appium?

Ideally, to answer that question we need to understand that there are certain
characteristics that must be present in an Automation tool, including:

e We should not have to change the app to apply automation testing
e [t should not be language and platform specific.

e |t should be open-source so it can have a large community and better
updates.

e We should be able to automate both Hybrid and Native apps.

Appium checks all these boxes, and that’s why it's considered to be the leading
mobile test automation tool.

Appium is wrapper built upon Selenium WebDriver that translates Selenium
commands into iOS and Android specific commands, making the Selenium
WebDriver compatible with mobile. Selenium supports Java, Python C#, Ruby,
JavaScript, PHP.

Appium is using vendor-specific frameworks which are:

11 www.kobiton.com



e i0S9.3and above: Apple's XCUITest
e i0S9.3and lower: Apple's UlIAutomation
e Android 4.2+: Google's UiAutomator/UiAutomator2

e Android 2.3+: Google's Instrumentation. (Instrumentation support is
provided by bundling a separate project, Selendroid)

e Windows: Microsoft's WinAppDriver

In the coming chapters we’ll be doing a deep-dive into Appium. By the time you work
through this book, you will be a very accomplished and capable Appium test
engineer. The first place to start your journey is setting up your environment. So
grab a cup of coffee and let’s get started.

12 www.kobiton.com



Chapter-1: Setting Up Your
Testing Environment

Appium is platform independent so executing Appium scripts is largely consistent
across all the major platforms (Linux, Mac, and Windows). In this section, we will
discuss how can you setup Appium and it’s dependencies on different platforms.
Refer to the section relevant to your environment.

Installation on Windows

Software required:

1. Java
2. Android SDK (Android Studio)
3. Node.js

4. Appium Desktop Server

1) Install the JDK software and set JAVA_HOME
1. Install the Java Development Kit Software.

= Goto: http://java.sun.com/javase/downloads/index.jsp

» Select the appropriate JDK software and click Download.

= The JDK software is installed on your computer, for example,
atC:\Program Files\Java\jdk1.6.0 02. Youcan
move the JDK software to another location if desired.

2. Set JAVA HOME:
* Right click My Computer and select Properties.

= Onthe Advanced tab, select Environment Variables, and then
edit JAVA_HOME to point to where the JDK software is located,
like: C: \Program Files\Java\jdkl.6.0 02.

* You can checkit by typing$ java -versioncommand at
the command prompt

13 www.kobiton.com



14

>

Environment Variables ‘ X

—

Edit System Variable -

Variable name: JAVA_HOME

Variable value: C:\Program Files\Java\jdk1.8.0_171

[ OK H Cancel l

System variables

Variable Value o
asl.log Destination=file \E\
ComSpec C:\windows\system32\cmd.exe
FP_NO_HOST_C... NO

JAVA_HOME C:\Program Files\Java\jdk1.8.0_171 il

New... H Edit... H Delete ]

[ 0K H Cancel ]

Figure-1: JAVA_HOME System Variable.

7

Environment Variables

>

Edit System Variable u

Variable name: Path

Variable value: :driver_win3p\;JAVA_HOME\bin\;C:\Gradle

[ OK ] [ Cancel

System variables

Variable Value A

MAVEN_HOME C:\Apache\maven
NUMBER_OF_PR... 4

0s Windows_NT
Path C:\Python217H\;C:\Python217H\Scripts...
New... H Edit... H Delete ]

[ OK H Cancel ]

Figure-2: PATH System Variable.

www.kobiton.com




2) Install Android Studio and set ANDROID HOME

1. Install Android Studio and the SDK:
= Goto: https://developer.android.com/studio/index.html

= Download and Install Android Studio

* Open Android Studio and then download the needed Android
SDK files from Tools > Android > SDK Manager

2. Set ANDROID HOME:
* Right click My Computer and select Properties.

= Onthe Advanced tab, select Environment Variables, and then
add ANDROID HOME to point to where the Android SDK files is
located, like: D:\Android\sdk\

= Verify it on the Command prompt using $ echo
%ANDROID_ HOME?% command. Output must display the SDK
path.

» All Control Panel Items » System

QO [#%& » Control Panel

= LT

Control Panel Home

System Properties

Environment Variables

4 Device Manager
4 Remote settings
e System protection

% Advanced system settings

See also
Action Center
Windows Update

Performance Information and
Tools

Computer Name | Hardware | Advanced SystemProtectioanemote‘

You must be logged on as an Administrator to make most of these changes.
Performance

Visual effects, processor scheduling. memory usage. and virtual memory

User Profiles

Desktop settings related to your logon

Startup and Recovery

System startup. system failure, and debugging information

Setlings.

Environment Variables...

ook

Cancel ]

Apply

E

.

User variables for Pratik
Variable Value &
ANDROID_HOME  D:\Android_SDK ‘ = ‘
ANDROID_SDK_... C:\Android
GOOGLE_APLKEY no
GOOGLE_DEFAU... no )
New... ] [ Edit... , l Delete
System variables
Variable Value ol
ANDROID_HOME D:\Android_SDK El
asl.log Destination=file
ComSpec C:\windows\system32\cmd.exe
FP_NO_HOST_C... NO i
New... ] [ Edit... ’ [ Delete ]

Figure-3: ANDROID_HOMIE System Variable.

3) Installation of Node.js

1.

15

Install Node.js from: https://nodejs.org/en/download/

www.kobiton.com



2. You can verify installation by entering $ npm -v command at the
command prompt and it will display the version.

@4 Command Prompt

Microsoft Windows [Uersion 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

>hpm -v

Figure-4: Node.js version

4) Installation of Appium desktop server

1. Gotothe Appium github project and Download the relevant Appium
Desktop .exe file.

2. Install it and Open Appium.exe file and start the server

File View Help

@ appium
m Advanced | Presets

Start Server v1.9.1

Edit Configurations (&

Figure-5: Appium Desktop Application

16 www.kobiton.com



3. ATerminal should appear saying ‘The server is running’

File View Help

wWelcome to Appium v1.9.1

Appium REST http interface listener started on 0.0.0.0:4723

Figure-6: Appium Server is running on 0.0.0.0:4723

Please follow the above steps correctly in order to have a seamless Appium
setup experience.

Installation on Mac

Software required:

Java

Android SDK (Android Studio)
Node.js

XCode

Appium Desktop Server

vk wnN e

1) Install the JDK software

1. Install the Java Development Kit Software from:
http://java.sun.com/javase/downloads/index.jsp

2. Select the appropriate JDK software and click Download.

3. Set JAVA HOME:
* Right click My Computer and select Properties.

= Onthe Advanced tab, select Environment Variables, and then
edit JAVA_HOME to point to where the JDK software is located,
like: C:\Program Files\Java\jdkl.6.0 02.

17 www.kobiton.com



2) Install Android Studio & Android SDK

1. Install Android Studio from:
https://developer.android.com/studio/index.html

2. Open Android Studio and then download the needed Android SDK
files from Tools > Android > SDK Manager

3) Set JAVA_HOME & ANDROID_HOME

1. We need to store Environment variables in .bash_profile file so
open Terminal and enter this command to open the bash_profile:

$ vi ~/.bash_profile

2. Now to you need to go into insert mode by pressing the "i* key from
the keyboard, and write the following text at the end of the file.

export ANDROID_HOME=/Users/username/Library/Android/sdk
export ANDROID SDK=$ANDROID HOME

PATH=$PATH: $ANDROID HOME/build-tools

PATH=$PATH: $ANDROID HOME/platform-tools

PATH=$PATH: $ANDROID HOME/tools

export PATH

export
JAVA_HOME=""/System/Library/Frameworks/JavaVM. framework/Versi
ons/Current/Commands/java_home™ "

3. Press ESC key followed by :wq which will save the .bash_profile
file.

4. You can check that JAVA HOME & ANDROID HOME are properly set
by executing commands $ java -version &$ echo
$ANDROID HOME Respectively.

18 www.kobiton.com



@ 1. vim

export ANDROID_HOME=/Users/username/Library/Android/sdk
export ANDROID_SDK=$ANDROID_HOME

PATH=$PATH: $ANDROID_HOME/build-tools
PATH=$PATH : $ANDROID_HOME/platform-tools
PATH=$PATH: $ANDROID_HOME/tools

export PATH

export JAVA_HOME=""/System/Library/Frameworks/JavaVM. framework/Versions/Current/
Commands/java_home™

"

Figure-7: ANDROID_HOME & JAVA_HOME environment variables.

4) Installation of Node.js
1. Install Node.js from: https://nodejs.org/en/download/

2. You can verify the installation by entering $ npm -v command at
the command prompt and it will display the version.

5) Installation of the Appium desktop server
1. Go to the Appium github page and download the relevant Appium
Desktop .dmg file.

2. |Install it and Open Appium and start the server

3. ATerminal should appear saying ‘The server is running’

19 www.kobiton.com



[ NON ) Appium

@ appium

Host 0.0.0.0

Port 4723

Start Server v1.8.1

Edit Configurations

Figure-8: Appium Desktop Application

[ NON ) Appium

[Appium] Welcome to Appium v1.8.1

[Appium] Appium REST http interface listener started on 0.0.0.0:4723

Figure-9: Appium Server is running on 0.0.0.0:4723

6) XCode with Appium libraries setup
1. Install XCode: https://developer.apple.com/download/

2. Install Xcode Command line tools:
= Execute below command on Terminal:
$ xcode-select --install

20 www.kobiton.com



3. Install Brew(If it’s not installed already):

* Execute below command on Terminal:
$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/ins
tall/master/install)"

4. Install libimobiledevice:

= Execute below command on Terminal:
$ brew install libimobiledevice --HEAD

5. Install ios-deploy:

= Execute below command on Terminal:
$ npm install -g ios-deploy

6. Install carthage:

= Execute below command on Terminal:
$ brew install carthage

NOTE: Now you are set to run your iOS Appium Script on Simulator

7) WebDriverAgentRunner setup(Setting up iOS real devices tests

21

with XCUITest)
This is the most crucial and important step of Appium setup for iOS.
If you don’t follow these steps correctly then you might not be able to
run the Appium Automation scripts on your real iOS devices.

There are 2 ways to configure project in Appium:
1) Basic (automatic) configuration
2) Basic (manual) configuration

Automatic configuration

The easiest way to get up-and-running with Appium's XCUITest support on
iOS real devices is to use the automatic configuration strategy. There are two
ways to do this:

1) Use the xcodeOrgId and xcodeSigningId desired capabilities:

"xcodeOrgId": "<Team ID>",

www.kobiton.com



"xcodeSigningId": "iPhone Developer"

In Java, the code will look like:

desiredCapabilities.setCapability("xcodeOrgId", <<Team ID>>);
desiredCapabilities.setCapability("xcodeSigningId", "iPhone
Developer");

NOTE: You will learn about desiredCapabilities in a subsequent chapter. You
can always come back to this section after you’ve progressed in your Appium
knowledge a bit further and need to start testing on real iOS devices (as
compared to Emulators).

or

2) Create a .xcconfig file somewhere on your file system and add the
following to it

DEVELOPMENT_TEAM = <Team ID>
CODE_SIGN_IDENTITY = iPhone Developer

After this you need to set the desired capabilities and set the path to
.xcconfig file:

desiredCapabilities.setCapability("xcodeConfigFile",
"path/to/.xcconfig")

In either case, the Team ID is a unique 10-character string generated by
Apple that is assigned to your team. You can find your Team ID using your
developer account. Sign in to www.developer.apple.com/account, and click
Membership in the sidebar. Your Team ID appears in the Membership
Information section under the team name. You can also find your team ID
listed under the "Organizational Unit" field in your iPhone Developer
certificate in your keychain.

NOTE: These are mutually exclusive strategies; use either the
xcodeConfigFile capability or the combination of xcodeOrgId and

22 www.kobiton.com



xcodeSigningId. For more details you can visit this link.

2. Manual configuration

There are many cases in which the basic automatic configuration is not
enough. This usually has to do with code signing and the configuration of the
project to be able to be run on the real device under test. Often this happens
when the development account being used is a "Free" one, in which case it is
not possible to create a wildcard provisioning profile, and will often not
create one for the default application bundle.

Please follow these steps to Manually configure the WebDriverAgent XCode
project.

® Move to the: WebDriverAgent.xcodeproj(Make sure you have
installed Appium Desktop application properly):

$ cd
/Applications/Appium.app/Contents/Resources/app/node_modules/
appium/node_modules/appium-xcuitest-driver/WebDriverAgent

® Execute the Scripts/bootstrap.sh script using:

$ sh Scripts/bootstrap.sh

® Open the WebDriverAgent.xcodeproj project in Xcode.

WebDriverAgent
o = %y A O Q
> ansi-to-html > AUTHORS adbkit-monkey 4 build > Cartfile
> [ antd > bin > [l aggregate-error 4 = gulpfile.js Cartfile.resolved
appium 4 build > ajv > ® index.js Carthage 4
appium-support 4 = CONDUCT.md ansi-regex > lib > Configurations 4
> aproba 4 = CONTRIBUTING.md appium-adb 4 LICENSE = CONTRIBUTING.md
archiver-utils 4 GOVERNANCE.md appium-an...id-bootstrap  » package.json Inspector >
are-we-there-yet 4 gulpfile.js appium-android-driver > WebDriverAgent > LICENSE
array-filter > = IDEAS.md appium-android-ime > PATENTS
array-map 4 lib > appium-base-driver > PrivateHeaders >
array-reduce > LICENSE appium-chromedriver > README.md
array-tree-filter > node_modules > appium-espresso-driver > Resources >
asap > npm-shrinkwrap.json appium-fake-driver > Scripts >
assert-plus 4 package.json appium-ios-driver 4
1 async > packweb.json . appium-ios-simulator 4 WebDriverAgentLib >
asynckit > [£ RELEASE.pdf appium-mac-driver > WebDriverAgentRunner ~ »
aws-sign2 > = ROADMAP.md appium-re...te-debugger » WebDriverAgentTests 4
aws4 4 triagers.json appium-selendroid-driver »
babel-code-frame > appium-support >
[ babel-core > [} appium-uiautomator 4
babel-helpers 4 appium-uia...ator2-driver »
babel-messages 4 appium-uia...ator2-server »
balanced-match > appium-unlock »
base64-js > appium-windows-driver >
borypt-pbkdf - applum-xcode . WebDriverAgent.xcodep
big-integer > appium-xcuitest-driver > A
big.js > appium-you...gine-driver > I’O! -~
Figure-10: WebDriverAgent.xcodeproj Project in Finder window..
o
o Select WebDriverAgentRunner under TARGETS.
.
e Now when you move to WebDriverAgentRunner, you would face an

error that Xcode failed to create provisioning profile:

23 www.kobiton.com




TARGETS
E WebDriverAgentLib

[~7] UnitTests

[ IntegrationTests_1
[ ]IntegrationTests_2
[ IntegrationTests_3

f\ IntegrationApp

( ] ® ) 7)) 7~ Generi..Device ~ WebDriverAgent | Build Succeeded 2 = © <« O 3g M@
B8 é WebDriverAgent < >
[] General Resource Tags Info Build Settings Build Phases Build Rules

PROJECT N
V¥ Testing
:;’\ WebDriverAgent o
Target Application = None |T]

il WebDriverAgentRunner v Signing

Automatically manage signing
Xcode will create and update profiles, app IDs, and
certificates.

Teom  EE—— [

Provisioning Profile Xcode Managed Profile

Signing Certificate iOS Developer

Status @ Failed to create provisioning profile.
The app ID "com.facebook.WebDriverAgentRunner"
cannot be registered to your development team
Change your bundle identifier to a unique string to
try again

Try Again

© No profiles for
‘com.facebook.WebDriverAgentRunner' were
found
Xcode couldn't find any iOS App Development
provisioning profiles matching
‘com.facebook WebDriverAgentRunner"

Figure-11: XCode: WebDriverAgentRunner Project in not able to find Provisioning profile.

24

The easiest way to resolve that is 1) Select WebDriverAgentLib under
TARGETS, 2) select Automatically manage signing, 3) select valid
Team and most important 4) change the Bundle Identifier and put
the Bundle Identifier of your existing valid XCode project the purpose
here to put something that Xcode will accept.

www.kobiton.com



@ o ) [71) /" Generi..Device ~ WebDriverAgent | Build Succeeded 2 = © < I

=] & webDriverAgent <
D General Resource Tags Info Build Settings Build Phases Build Rules

PROJECT N
V Identity

B WebDriverAgent

TARGETS Display Name

22 WebDriverAgentLib
Bundle Identifier com.test.abc

[} WebDriverAgentRunner

[ UnitTests Version 1.0

DIntegrationTes(sﬁ’| Build $(CURRENT_PROJECT_VERSION)
[} IntegrationTests_2
[ IntegrationTests_3 v Signing

4‘&\ IntegrationApp Automatically manage signing
Xcode will create and update profiles, app IDs, and
certificates.

Team [— )

Provisioning Profile None Required

Signing Certificate iPhone Developer: _

Vv Deployment Info

Deployment Target 9.0

O <

Devices  Universal

App Extensions Allow app extension API only

+ - G V¥ Linked Frameworks and Libraries

Figure-12: XCode: Change Bundle Id, Select and Select Valid Team Project

® Also ensure that you should have installed the valid Provisioning
profile(Of course compatible with entered Certificate and Bundle
Identifier). Now move to WebDriverAgentRunner again and 1) Select
valid Provisioning Profile under Signing (Debug) and 2) Select valid
Provisioning Profile under Signing (Release).

25 www.kobiton.com



Ml WebDriverAgentRunner

[ UnitTests
[ IntegrationTests_1
[ IntegrationTests_2

" IntegrationTests_3
- 9 - v Signing (Debug)

;ﬁ& IntegrationApp
Provisioning Profile
Team

Signing Certificate

Vv Signing (Release)
Provisioning Profile
Team

Signing Certificate

@® @ > []) /" Generi..Device  WebDriverAgent | Build Succeeded 2 =
g2 & webDriverAgent
E General Resource Tags Info Build Settings Build Phases Build Rules
PROJECT .
V Testing
Q WebDriverAgent o
Target Application = None
TARGETS getApp B
53 WebDriverAgentLib
Vv Signing

Automatically manage signing
Xcode will create and update profiles, app IDs, and
certificates.

I [ ©

MobileWits Inc.

iPhone Developer

I [ ©

MobileWits Inc.

iPhone Developer

[y SRR

Figure-13: XCode: Select Valid Provisioning Profile for WebDriverAgentRunner

o Now to be on safer side repeat above step same for UnitTests,
IntegrationTests_1, IntegrationTests_2, IntegrationTests_3 and

IntegrationApp

e Connect valid iPhone device to your Mac machine(Please ensure

device is included in selected provisioning profile).

o Select WebDriverAgentRunner under TARGETS and click on Test

button to execute build on your connected device.

PROJECT
& WebDriverAgent
TARGETS

o ) WebDriverAgent

"] We...er ) Nl iPhoneX

General Re

V¥ Testing

Figure-14: XCode: Test the Project on connected iPhone device

26 www.kobiton.com



® You can observe that when you click on Test/Run button the
WebDriverAgent application will be installed to iOS device and it will
open and give you the black screen for a moment and automatically
closed. That means Success. Now you can able to Run Appium script
on this device.(In fact it applies to all the valid devices registered
under selected provisioning profile).

NOTE: Please install Appium-Doctor(Node Utility) using npm, It will diagnose and fix
common Node, iOS and Android configuration issues before starting Appium.

$ npm install -g appium-doctor
//then
$ appium-doctor

//it will give checklist of which things are okay and
which are not

abcs-MacBook-Pro:~ $ appium-doctor
inf Appium Doctor v.1.4.3
Lnf ### Diagnostic starting ###
nf The Node.js binary was found at: /usr/local/bin/node
nf v Node version is 10.9.0
Xcode is installed at: /Applications/Xcode.app/Contents/Developer
Xcode Command Line Tools are installed.
DevToolsSecurity is enabled.
The Authorization DB is set up properly.
Carthage was found at: /usr/local/bin/carthage
HOME is set to: /Users/pratik

v ANDROID_HOME is set to: /Users/pratik/Library/Android/sdk
JAVA_HOME is set to: /Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home
adb exists at: /Users/pratik/Library/Android/sdk/platform-tools/adb
android exists at: /Users/pratik/Library/Android/sdk/tools/android
emulator exists at: /Users/pratik/Library/Android/sdk/tools/emulator
Bin directory of $JAVA_HOME is set
### Diagnostic completed, no fix needed. ###

Everything looks good, bye!

abcs-MacBook-Pro:~ s
Figure-15: Appium Doctor Node Utility on iOS

Installation on Ubuntu(Linux)

Software required:

1. Java

2. Android SDK (Android Studio)
3. Node.js

4. Appium Desktop Server

27 www.kobiton.com



1) Install JAVA(JDK/JRE) & set JAVA_HOME
e |Install Java Development Kit Software from:

$ sudo apt-get update

$ sudo apt-get install default-jre
$ sudo apt-get install default-jdk
//to install oracle jdk

$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-installer

e Inordertoset JAVA_HOME on linux you need to edit the . bashrc
and need to specify the path of java directory.

$ vi ~/.bashrc

export JAVA HOME=/usr/lib/jvm/java-8-openjdk-amd64
export PATH=${PATH}:${JAVA HOME}/bin

® Run below command to verify that recently saved environment
variables are displaying correct path or not.
$ echo $JAVA HOME
$ echo $PATH

NOTE: Use the command: $ which java to find out exact path to which java
executable

2) Install Node.js without using sudo

e Do notinstall node.js through apt-get, which will need sudo rights and
appium will not work if node.js is installed as sudo user.

If you have already installed remove it using commands:

$ sudo apt-get remove nodejs
$ sudo apt-get remove npm

e Download latest nodejs linux binaries from
https://nodejs.org/download/release/latest/ into a folder for
example /home/username/Downloads.

$ cd /usr/local tar --strip-components 1 -xzf

28 www.kobiton.com



/home/username/Downloads/node-v8.2.1-1inux-x64.tar.gz

o For Verification use below commands:
$ which node //it should give you output like:
usr/local/bin/node

$ node -v //it should give you output v8.2.1 (or whichever
version you have installed)

3) Install Android Studio

e Download and install Android Studio from Official Google Website:
https://developer.android.com/studio/

e Openterminal and Enter:

$ cd android-studio/bin
$ . studio.sh //To execute the studi.sh script

e Now android studio will open.Click next and let it download required
things.

® Once android sdk is installed add ANDROID_HOME to environment
variable using:

$ vi /.bashrc

export ANDROID_HOME=/home/user_name/Android/Sdk
export PATH=$PATH:/home/user_name/Android/Sdk/tools
export PATH=$PATH:/home/user_name/Android/Sdk/platform-tools

4) Install Appium globally:
e Open terminal and enter below commands in order to install the
appium globally.

$ npm install -g appium
$ appium //To start the Appium server

29 www.kobiton.com



5) Install appium-doctor to troubleshoot the errors if any using

® Please install Appium-Doctor(Node Utility) using npm, It will diagnose
and fix common Node, iOS and Android configuration issues before
starting Appium.

$ npm install -g appium-doctor
//then
$ appium-doctor

//it will give checklist of which things are okay & which
aren’t

30 www.kobiton.com



Chapter-2: Writing Your First
Test Case

And now the moment you’ve been waiting for: Writing your first test case. You'll
quickly grasp the basics of Appium and see how it can be used for test automation.

We're going to cover a lot of ground in this chapter but it will be well worth it. By the
end of this chapter you’ll have grasped the basics of Appium and writing test cases.

Appium supports Native, Hybrid and Web application testing, and you can execute
Appium scripts on Real Physical devices(iOS/Android), simulators(iOS) and
emulators(Android).

The best thing about Appium is it has no dependency on the Mobile OS or Mobile
Application, meaning you can Appium scripts can run everywhere. For Automation
Testing with Appium you will just need the APK or IPA file.

Under the hood, Appium is just wrapper that translates Selenium Webdriver
commands into XCUITest for iOS and UiAutomator2 for Android. XCUITest and
UiAutomator2 are Test frameworks for XCode and Android Studio respectively.

Appium supports all the programming languages which Selenium supports such as
Java, C#, Python, Ruby, Javascript with Node.js etc.

For the examples that follow, we will be using Java since Appium was written in Java,
and you can find many resources online on Appium and Java, which makes your
learning journey a little easier. In our examples we will be using a Mac, but of course
you will be fine on any supported operating system.

Please make sure you followed the previous chapter and installed Appium properly.
Now that Appium is installed, we’ll be installing our development environment. If
you already have a development environment installed, you can skim through the
steps that follow. However, it may be easier for you to follow these instructions and
have your environment mimic ours for easier reference.

Note: The steps may seem a little daunting especially when you want to write a
simple test case. However, this is really a one-time effort. Once your environment is
configured and you’re comfortable with concepts such as dependency management,
you’ll find writing the Appium scripts is a relatively straightforward task. So stay with
us through this section, and it will get easier, we promise.

31 www.kobiton.com



We will start by installing an IDE to create Java based Appium Scripts. You can either
select Intelli) IDEA or Eclipse IDE (or any IDE of your choice). We will be using IntelliJ.

To summarize, we will use the following to create our Appium Script:
1. Programming Language: Java
2. Test Framework: TestNG
3. IDE: IntelliJ IDEA
4. Project Dependency Tool: Gradle

There are 2 primary things to accomplish in this chapter:

1) Setup the IDE (Intelli) IDEA).

2) Create the First Automation Test Case. Note that Appium is used to drive or
control the underlying mobile application in order to perform automation on
it. However, you still need some testing framework for implementation of the
actual tests. We will be using the TestNG framework for this purpose.

Setup the IDE (Intelli) IDEA)

In order to sethup the IDE you need to:

1) Install the intelli) IDEA
2) Install the TestNG plugin on IntelliJ IDEA.

1) Installation of IntelliJ IDEA

1. You can download and install IntelliJ IDEA Community Edition from
here: https://www.jetbrains.com/idea/download/#section=mac

2. Install it by dragging and dropping:

32 www.kobiton.com



IntelliJ IDEA CE

DR
DEV

LOP

#x )

e

IntelliJ IDEA CE Applications

Copying “IntelliJ IDEA CE" to "Applications”

‘< P

919.3 MB of 977.6 MB - About 5 seconds

33

Figure-1: Installation of IntelliJ IDEA Community Edition.

3. If you are installing Intelli) Idea first time, then you need to select the
“ Do not import settings” option.

Import Intelli) IDEA settings from:
Custom location. Config folder or installation home of the previous version:

|Applications

(o] go not import settings

Figure-2: Complete the Installation.

4. Accept the IntelliJ IDEA Privacy Policy Agreement:

www.kobiton.com



ntelliJ IDEA Privacy Policy Agreement

Please read and accept these terms and conditions:

@ Help us improve the Website by measuring any errors that occur
@ Test different designs for the Website

Some of our performance cookies are managed for us by third parties.
We do not allow the third party to use the\cookies for any purpose other
than those listed above.

By using our Website, or expressing your consent as otherwise required
by applicable law, you accept the use of 'Performance’ cookies. If you
prevent cookies, we cannot guarantee how our Website will perform for
you.

Functionality’ cookies are used to provide services or to remember
settings to improve your visit. We use 'Functionality' cookies for such
purposes as

@ Remember settings you've applied such as layout, text size,
language, preferences and colors

& Remember if we've alreadv asked vou if vou want to fill in a

Reject and Exit ([ NACERRRM

Figure-3: Policy Agreement.

5. Set your preferred theme and click on Next:

& IntelliJ IDEA B = 98%(%) Wed10:56PM Q =

e o Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script — Default plugins — Featured plugins

Set Ul theme

© Default

€ Helloworld java x

import javax.swing.#;
import java.awt.s;

& 1 Project

public class Helloworld {
public HelloWorld() {
- JFrame frame = new JFrame(“Hello wor
JLabel label = new JLabell();
label.setFont(new Font("Serif", Font

label. o 0

«J 7: Structure

+ - B €
v (@ @Line Breakpoints

o £ Line 6 in HelloWorld

v @ Exception Breakpoint
v (@ @Python Exception Bre

[ All exceptions
v @Django Exception Bre

Ul theme can be changed later in Preferences | Appearance & Behavior | Appearance

Skip All and Set Defaults Next: Keymaps

1000 " 1BRORALTOMI gL r ASH B~
Figure-4: Set Ul Theme.

6. Select the default plugins, and Finish the setup.

2) Install the TestNG plugin on Intelli) IDEA

By default the TestNG plugin is installed in Intelli) IDEA. You can check it in
several ways but the best way is to check it is in Plugins.

34 www.kobiton.com



1. Open IntelliJ Idea and click on Configure > Plugins.

IntelliJ IDEA

Version 2018.2.2

-+ Create New Project
I¥ Import Project
= Open

I+ Check out from Version Control

2 Configure v Get Help ~
Preferences
Plugins
Import Settings

Export Settings

Settings Repository...

Edit Custom Properties...
Edit Custom VM Options...
Check for Updates

Project Defaults

N e ol i : ’ x vk

Figure-5: Go to IntelliJ IDEA Plugins.

2. Type ‘testng’ and search it, if it is installed properly you can see the
Right tick icon right next to ‘TestNg’ text. And if it is not installed you
need to install by clicking on Install JetBrains plugin... > Search for
‘testng’ > Install it.

35 www.kobiton.com



| NON | Plugins

Q- testng Show: All plugins +

Sort by: name ¥ TestNG-J

il 1 estNGRN) v

IEENE Integration

Change Notes
o [IES10E-151 Final passing test result is not properly hidden
e Fix method popup if test has class level @Test annotation
e Added auto-completion for method names in

dependsOnMethods
e Added auto-completion for group names in dependsOnGroups
o Fix for NPE on annotations without an annotation name (@ only).
o Added [FENIE 5.6 jars
e Added inspection descriptions
Install JetBrains plugin... Browse repositories... Install plugin from disk...

Figure-6: Check IntelliJ Plugin.

Create your first automation test case

We need to create a new project and than need to setup the Automation script, so
we can divide this into 2 sections:

1) Create New Project.
2) Setup the Automation Case.

1) Create new project
1. Open Intelli) IDEA and click on “Create New Project’

IntelliJ IDEA

Version 2018.2.2

=+ Create New Project
1 Import Project
= Open

H Check out from Version Control ~

& Configure v+ Get Help +

Figure-7: Create New Project.

2. Now we need to select the project configuration such as Project type,
Java version, and Build tool. We can either use Maven OR Gradle, but
since Gradle is more flexible we will be using that for our tutorial.

36 www.kobiton.com



However you can use Maven if you prefer (We just need to add few
dependencies).

e New Project

Java Project SDK:  [11.8 g New.
Java FX

Android Kotlin DSL build script

IntelliJ Platform Plugin Additional Libraries and Frameworks:

Java
Maven G Groovy
. .
IntelliJ Platform Plugin
& Groovy K Kotlin (Java)
@ Griffon I Kotlin (JavaScript)
K Kotlin IZ Kotlin (Multiplatform Common - Experimental) o
Empty Project I%- Kotlin (Multiplatform JS - Experimental)

K Kotlin (Multiplatform JVM - Experimental)

? Cancel Previous ﬁ

Figure-8: Create New Project.

3. Give the proper Groupld and Artifactld(Project Name) and Version.

[ NON ) New Project
Groupld automation.test.com|

Artifactld FirstAutomationTest

Version 1.0-SNAPSHOT

Figure-9: Enter Gropuld, Artifactld and Version.

NOTE: For better project management it is better to give a proper Group Id and
Artifact Id.

Visit: http://maven.apache.org/quides/mini/quide-naming-conventions.htm| to
learn more about it.

37 www.kobiton.com



4. This is the Gradle selection dialog, If you haven’t installed Gradle
explicitly it is recommended to the Use default gradle wrapper

(recommended)

[ NON ) New Project
Use auto-import
Group modules: ° using explicit module groups using gualified names

Create separate module per source set

IO Use default gradle wrapper (recommended)

Use local gradle distribution

Gradle home:
Gradle JVM: 1 Use Project JDK (1.8, path: /Library/Java/JavaVirtual...k1.8.0_181.jdk/Contents/Home)
? Cancel Previous

Figure-10: Select ‘Use default gradle wrapper (recommended)’

5. Confirm all the project details and Finish the setup.

38 www.kobiton.com




Making the move to automation testing with Appium

[ NON | New Project

Project name: I FirstAutomationTestl

Project location: ‘ ~/Downloads/FirstAutomationTest

v More Settings

Module name: ‘ FirstAutomationTest

Content root: ’ /Users/pratik/Downloads/FirstAutomationTest

Module file location: ‘ /Users/pratik/Downloads/FirstAutomationTest

Project format: \ .idea (directory based)

\’7/ Cancel

Figure-11: Confirm Project Details.

6. After the setup is finished, gradle will build the project and it may take
some time (especially for the first time, because it will download the
Gradle .zip file). After the sync up is done you can see the Project

Directory as per the below image.

Now we are ready to add Appium dependencies and then start coding

the first automation test case.

|leoe i i [~/D:
1 FirstAutomationTest ) [ src ) A AddConfiguration.. b % 0. W B Q
[ Project ~ © r o — ~
v IgFi fonTest ~/D i i 9
» [ .gradle %
» [ idea

» B gradle b
]
» g main 2
» g test g
A build.gradle @

2 gradlew

2 gradlew.bat
™ settings.gradle
» Il External Libraries
Yo Scratches and Consoles

pIiNg WY 3%

Build: Sync & —
s v @ FirstAutomationTest: sync finished at 10/11/18, 6:43 PM 13 s 801 ms.
8 - @ Starting Gradle Daemon 1s381ms
5 v @ Run build /Users/pratik/Downloads/FirstAutomationTest 4sNMms
s v @ Load build 25154 ms
:‘ v @ Run init scripts 15589 ms
» @ Apply script ijinit.gradle 15550 ms
g X » @ Evaluate settings 552 ms
g » @ Configure build 15293 ms
@ @ Calculate task graph 39 ms
= » @ Run tasks 468 ms
v .M I i i jonTest 25238 ms

Terminal i= 6:TODO Q Event Log

o w8

Figure-12: IntelliJ IDEA: Project - First Automation Test

39 www.kobiton.com



2) Setup the automation case

The first step of any project setup is to download and link the needed
libraries/files referred to as dependencies. Gradle and Maven are
dependency management tools and have a large number of remote
dependencies.

So let’s understand how Gradle works:

e Modern software projects rarely build code in isolation. Projects
reference modules for the purpose of reusing existing and proven
functionality.

o Selected versions of modules are downloaded from dedicated
repositories(from remote servers)

® And they are stored in the dependency cache to avoid unnecessary
network traffic.

download Maven
artifacts / Repository

Gradle >

Build
\ lvy
store access Repository
artifacts artifacts
Gradle
Cache

Figure-13: Gradle Build System

Declaring a concrete version of a dependency:

e Atypical example for such a library in a Java project is the Automation
testing library which is Selenium.

40 www.kobiton.com



e The following code snippet declares a compile-time dependency on
the Spring web module by its coordinates:

build.gradle:

sourceCompatibility = 1.8

repositories {
mavenCentral()

}

dependencies {

compile group: 'org.seleniumhq.selenium', name:
'selenium-java', version: '3.14.0'

}

e The above code snippet declares a compile-time dependency of
Selenium library(.JAR file), So when you build the project Gradle will
download the Selenium library having version 3.14.0 from
mavenCentral(remote registry) and store it in the Gradle cache, so
when you mention this same library with the same version next time
on a different project, Gradle will link the library from the Gradle
cache.

Here we need 2 dependencies:

1) Appium Java Client - Mobile Automation Appium Library.
2) TestNG - Test Framework.

Now continue to our project, open build.gradle file and add the following
dependencies to the build.gradle file.

dependencies {

testCompile group: 'io.appium', name: 'java-client', version:
'6.1.0"

testCompile group: 'org.testng', name: 'testng', version:
'6.14.3"'

}

NOTE-1: As we already have the TestNG plugin installed, we don’t need to
mention the TestNG dependency but to be on the safer side and so that this
project can also be imported to other IDEs such as Eclipse, and to run through the
command line we need to have the dependency mentioned in build.gradle.

41 www.kobiton.com



NOTE-2: We will be adding the Automation script under src/test directory, so in
order to link the Appium and TestNG dependencies to that directory we need to
use the testCompile keyword instead of the compile keyword(which compiles the
dependencies and made them accessible to src/main directory).

After mentioning the dependencies in the build.gradle, the project will be
built and the mentioned dependencies will be downloaded, so now you can
use Appium and TestNG classes inside the test directory.

W FirstAutomationTest
plugins {
id 'java'

}

group 'automation.test.com’
version '1.0-SNAPSHOT'

sourceCompatibility = 1.8
repositories {

mavenCentral()

dependencies {
¢ testCompile group: 'io.appium', name: 'java-client', version: '6.1.0'
testCompile group: 'org.testng', name: 'testng', version: '6.14.3'

Figure-14: build.gradle

After dependency management we need to start working on our Appium
script. We will start by setting the correct set of Desired Capabilities.

What is “Desired capabilities”?

Desired Capabilities are core to Appium. They are actually a set of keys and
values sent to the Appium server to tell the server what kind of automation
session should be started. There are various capabilities to modify the
behavior of the server during automation.

We have a dedicated chapter on desired capabilities where we will explore
them in-depth, but for the sake of getting our first case test we’ll use the
following desired capabilities:

Android:

"platformName": "Android",
"platformversion": "8.0",
"app": "/Users/username/Downloads/sample.apk”,
"deviceName": "c4e3f3cda"

42 www.kobiton.com



iOS:

"platformName": "i0S",

"platformvVersion": "11.4.1",

"app": "/Users/username/Downloads/sample.ipa",
"deviceName": "John’s iPhone",

"udid": "bea36e2b0262ae4b77bd3463bd462922ee935d24"

Now let’s understand these capabilities:

1. platformName- Specifies the Mobile Device Platform to use. (iOS or
Android)

platformVersion- Mobile OS version (8.0, 11.4, 12.1)
app- The absolute path to the location of the app to test,
apk/ipa.(For this example it is under src/test/resource directory)

4. deviceName- Can either refer to an actual mobile device or to an
Emulator/Simulator. For Android you can find it using $ adb
devices command and for iOS you may use $ instruments -s
devices

5. udid- Itis the Unique device identifier of the connected physical
device.

We will look at both an Android and iOS test case. However, please review both
sections even if you are not testing on a particular platform. For each, we explore
a different scenario and you will be exposed to different features. If you don’t
have the specific platform, just read along so that you can get the gist of what we
are doing.

Android

1. We will look at an Android test first. After setting the valid
DesiredCapabilities, we need to pass them to the AndroidDriver class
along with the Appium Server URL(By default it is:
http://127.0.0.1:4723/wd/hub)

43 www.kobiton.com



AndroidDriver is the main class we will be working with. We will
create an instance of AndroidDriver and we will interact with all the Ul
Elements of the app using that object every time.

And as we are using the TestNG framework we will put these
initialization steps before the test starts, so our code will look like this:

¥ FirstAutomationTest ¢’ AndroidSampleTest.java

import io.appium.java_client.AppiumDriver;

import io.appium.java_client.android.AndroidDriver;
import org.openga.selenium.By;

import org.openga.selenium.remote.DesiredCapabilities;
import org.testng.annotations.BeforeTest;

import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class AndroidSampleTest {
public AndroidDriver driver;

@BeforeTest
public void setUp() throws MalformedURLException {
String appiumServerURL = "http://127.0.0.1:4723/wd/hub";

DesiredCapabilities dc = new DesiredCapabilities();

dc.setCapability( capabilityName: “platformName", value: "Android");

dc.setCapability( capabilityName: "platformVersion”, value: "8.0");

dc.setCapability( capabilityName: "app", value: "/Users/test/Downloads/FirstAutomationTest/src/test/resources/DemoApp.apk");
dc.setCapability( capabilityName: "deviceName", value: “c4e3f3cd");

dc.setCapability( capabilityName: “automationName", value: "UiAutomator2");

driver = new AndroidDriver(new URL(appiumServerURL), dc);

Figure-15: AndroidDriver initialization and Desired Capabilities.

TestNG provides annotations such as @BeforeTest, @BeforeMethod,
@AfterTest, @AfterMethod, @Test etc.

In the above screenshot, @BeforeTest means that the method will be
called before the test, and only once. So it is standard practice to put
the AndroidDriver initialization code over there, so the object of
AppiumDriver becomes accessible at the end of that method and
before the test.

2. Now let’s create the first sample Appium Test Case.
The @Test annotation(provided by TestNG) is used to create the
individual test case. So in the below code firstTest is an individual test
case.
@Test
public void firstTest(){}

3. Solet’s automate a simple scenario. In the below screen we want to
click(tap) on Login Screen item from list.

44 www.kobiton.com



(@) X4 100% @ 12:50
The App

Choose An Awesome View

Echo Box

Write something and save to local memory

Login Screen
A fake login screen for testing

Clipboard Demo
Mess around with the clipboard

Webview Demo
Explore the possibilities of hybrid apps

List Demo
Scroll through a list of stuff

Photo Demo
Some photos with no distinguishing IDs

Verify Phone Number

A fake SMS auto-verification screen

Figure-16: Android - Sample App.

4. After creating the test case we need to add the Appium logic to
interact with the Ul elements. In Appium we need each element’s
locator to interact with. If you want to tap on some button, you need
to find the locator of that button first and then after that you can
performa click() action upon it. We will be exploring locators in
detail in a subsequent chapter.

This code will find the Login Screen textview locator and simply click
onit:

driver.findElement(By.id("Login Screen")).click();

45 www.kobiton.com



Now our First Appium Automation Script is ready to execute, below is
the complete code:

import io.appium.java_client.AppiumDriver;

import io.appium.java_client.android.AndroidDriver;
import org.openga.selenium.By;

import org.openga.selenium.remote.DesiredCapabilities;
import org.testng.annotations.BeforeTest;

import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class AndroidSampleTest {
public AndroidDriver driver;
@BeforeTest

public void setUp() throws MalformedURLException {

String appiumServerURL
"http://127.0.0.1:4723/wd/hub";

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability("platformName", "Android");
dc.setCapability("platformVersion”, "8.0");

dc.setCapability("app",
"/Users/test/Downloads/FirstAutomationTest/src/test/resource
s/DemoApp.apk");

dc.setCapability("deviceName", "c4e3f3cd");
dc.setCapability("automationName", "UiAutomator2");

driver = new AndroidDriver(new URL(appiumServerURL),
dc);

}

@Test
public void firstTest() throws InterruptedException {
driver.findElement(By.id("Login Screen")).click();

46 www.kobiton.com



5. We are ready to execute it on a real device, so follow these steps:

a. Move to the Appium Desktop Application and Start the Server.

[j

N ) O Appium

[Appium] Welcome to Appium v1.8.1
[Appium] Appium REST http interface listener started on 0.0.0.0:4723

Figure-17: Appium Server is Running on 0.0.0.0:4723

b. Connect your Android Mobile device to your computer and
check that it is connected properly by executing $ adb
devices command. And also check the deviceName
capability has the same name of the device which is showing
up in the terminal.

abcs-MBP : ~ $ adb devices
List of devices attached

c4e3f3cd device

Figure-18: Android device is connected.

c. Please make sure that device screen is unlocked and that it’s
connected properly. Now move to intelliJ Idea and select the
test case name > Right click on it > Run “firstTest()’

47 www.kobiton.com



[SampleTest )

— @ FirstAutomationTest €' sampleTest.java

atiq 1 import io.appium.java_client.AppiumDriver;
2 import io.appium.java_client.android.AndroidDriver;
import org.openga.selenium.By;
import org.openga.selenium.remote.DesiredCapabilities;

import org.testng.annotations.BeforeTest;
import org.testng.annotatinnc Tact:

X Cut #®’X
8 import java.net.Malfor [
9 import java.net.URL; & Copy #C
10 Copy as Plain Text
12 G public class SampleTes Copy Reference N0%C
public AndroidDriv O Paste ®’Y
Paste from History... 8V
5 @BeforeTest ; -
16 public void setUp( Paste Simple Xo®v
String appiumS  Column Selection Mode 38
9 DesiredCapabil Find Usages XF7
20 dc.setCapabili »id");
2 dc.setCapabili Refactor e 10");
dc.setCapabili . ywnloads/Fi|
dc.setCapabili Folding > rd);
Analyze >
25 driver = new A
A3 ¥ Search with Google
@Test
2 public void GoTo e
driver.findEle  Generate... 8N
} Recompile 'SampleTest.java' 0 88F9
Run 'firstTest()" ~{R
# Debug 'firstTest()' ~A0D

G Run 'firstTest()' with Coverage

NG Save 'firstTest()'
Reveal in Finder
B Open in Terminal

Local History >

[5¢ Compare with Clipboard
SampleTest firstTest()

File Encoding
i= 6: TODO
© Create Gist...
Figure-19: Run the test case.
d. Observe the Test Result and confirm the navigation on your
device. It was a simple test case but you’ve actually
accomplished a lot! From here, you get to explore all the cool
features that Appium offers.
Run: SampleTest.firstTest <]
> | @F & | = 2 » @ Tests passed: 1of 1test - 9s 653 ms
@ Default Suite s/ Nov 11, 2018 10:09:03 AM io.appium.java_client.remote.AppiumCommandExecutor$l lambda$e
@ FirstAutomationTest | INFO: Detected dialect: W3C
L) v SampleTest
@ firstTest >
=
- i
B Terminal 4, Build = 0:Messages | b 4:Run = 6: TODO Q Event Log

Figure-20: Test Result.

Although we will be turning to iOS next, be sure to read this section even if you
are not doing iOS testing. In this example, we get just a little more sophisticated
with our test and also expose you to using an assert statement.

i0S
1. Let’s make our test case a little more sophisticated, while also looking

how we can work with iOS. Again, if if you are not planning on using
i0S, we suggest you read this section as we’ll be introducing new

48 www.kobiton.com




concepts applicable to both iOS and Android. For our iOS sample test
case we will create a separate Test Case file named iOSSampleTest

2. As we discussed above we need to put the iOS capabilities instead of
Android capabilities, and define an /0SDriver class instead of an
AndroidDriver class.

ionTest =} i Test.java ¢’ iossampleTest.java

import io.appium.java_client.ios.IOSDriver;

import io.appium.java_client.ios.IOSElement;

import org.openga.selenium.By;

import org.openga.selenium.remote.DesiredCapabilities;
import org.testng.Assert;

import org.testng.annotations.BeforeTest;

import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class i0SSampleTest {
public IOSDriver<IOSElement> driver;

@BeforeTest
public void setUp() throws MalformedURLException {
String appiumServerURL = “http://127.0.0.1:4723/wd/hub";

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability( capabilityName: "platformName", value: "i0S");
dc.setCapability( capabilityName: “"platformVersion", value: "11.4");
< dc.setCapability( capabilityName: "app", value: "/Users/test/Downloads/FirstAutomationTest/src/test/resources/DemoApp-iPhoneSimulator.app");
dc.setCapability( capabilityName: "deviceName", value: "iPhone X");

driver = new I0SDriver<IOSElement>(new URL(appiumServerURL), dc);

}
@Test
public void secondTest() throws InterruptedException {
int a = 5;
int b = 10;
driver.findElement (By.id("IntegerA")).sendKeys( ..keysToSend: a + "");
driver.findElement (By.id("IntegerB")).sendKeys( ..keysToSend: b + "");
driver.findElement (By.id("ComputeSumButton™)).click();
String answer = driver.findElement(By.id("Answer")).getText();
Assert.assertEquals(answer, expected: a + b + ", message: "Expected and Actual Result didn't match!");
}

Figure-21:i0SDriver initialization and Desired Capabilities.

3. After specifying the desired capabilities we can write the Automation
test case.We have a sample app(.app file, which will work on iOS
Simulator only) for automation. In this app there is a feature where
you can add 2 integer numbers and can get the the results. So we will
automate this feature.

49 www.kobiton.com




Compute Sum

?7?7?

show alert cont...t alert locati...alert

Label 1

Label 2

Location

Test Gesture Crash
A test label

Check calendar authorized

iPhone X - 11.4

S —

Figure-22:i0S Sample Application
The steps to automate this would be:

a. Find the locator of TextField A and enter the value (ie. Send
keys) from the keyboard.

driver.findElement(By.id("IntegerA")).sendKeys(5 + "");

50 www.kobiton.com



NOTE: The sendKeys () method accepts only String parameter so we have
converted the Integer value to a String by appending a blank String value.

b. Find the locator of TextField B and enter the second value
from the keyboard.

driver.findElement(By.id("IntegerB")).sendKeys(10 + "");

c. Findthe locator of ‘Compute Sum’ and click on it, so the result
would be displayed below the ‘Compute Sum’ textview.

driver.findElement(By.id("ComputeSumButton")).click();

String answer =
driver.findElement(By.id("Answer")).getText();

NOTE: The getText () method is used to get the Text(in String format) from Ul
Elements.

d. Getthe text of the result and compare it with the expected
result, so if you enter 5 into TextField A, 10 into TextField B
and when you click on ‘Compute Sum’ textview the result 15
should be displayed under ‘Compute Sum’.

Assert.assertEquals(answer, 15 + "", "Expected and Actual
Result didn't match!");

NOTE: Assert.assertEquals (expected, actual, error_message)isa
TestNG method used to compare the Expected and Actual values. This is the most
important step of any test case, because this is how automation test will know
whether values are being rendered on Ul is correct and as expected or not. You will
see us using Assertions throughout this guide.

TestNG is the Testing framework and work best with Appium(Mobile Automation)
and Selenium(Website Automation), you can learn more about the TestNG
Annotations and methods here: https://testng.org/doc/index.html

4. Below is the full code of our test which will enter 2 values into text
fields, click on ‘Compute Result’, get the result from app and compare
it with the expected result.

51 www.kobiton.com



import io.appium.java_client.ios.IOSDriver;

import io.appium.java_client.ios.IOSElement;

import org.openga.selenium.By;

import org.openga.selenium.remote.DesiredCapabilities;
import org.testng.Assert;

import org.testng.annotations.BeforeTest;

import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class iOSSampleTest {
public IOSDriver<IOSElement> driver;

@BeforeTest
public void setUp() throws MalformedURLException {

String appiumServerURL
"http://127.0.0.1:4723/wd/hub";

new

DesiredCapabilities dc
DesiredCapabilities();

dc.setCapability("platformName", "iOS");
dc.setCapability("platformVersion”, "11.4");

dc.setCapability("app",
"/Users/pratik/Downloads/FirstAutomationTest/src/test/reso
urces/DemoApp-iPhoneSimulator.app");

dc.setCapability("deviceName", "iPhone X");

driver = new IOSDriver<IOSElement>(new
URL (appiumServerURL), dc);

}

@Test

public void secondTest() throws InterruptedException {
int a = 5;
int b = 10;

driver.findElement(By.id("IntegerA")).sendKeys(a +
llll);
driver.findElement(By.id("IntegerB")).sendKeys(b +

52 www.kobiton.com



¥

driver.findElement(By.id("ComputeSumButton")).click();

String answer =
driver.findElement(By.id("Answer")).getText();

Assert.assertEquals(answer, a + b + ""
and Actual Result didn't match!");

}

, "Expected

}

You can get this example code on our github page.

Phew! We covered a lot of material in this chapter.

We learned the following:

Installation of IntelliJ IDEA.

TestNG plugin installation on Intelli) IDEA.

Setting up the Appium Project on IntelliJ IDEA.

Writing the first Automation Test on Android Real Device.
Writing the first Automation Test on iOS Simulator.

vk wnN e

Along the way you learned a little bit about desired capabilities, locators and
assertions. All of this is a great grounding to continue your education into the world
of Automated testing and Appium.

Take a break and let’s continue our journey when you get back.

53 www.kobiton.com



Chapter-3: Understanding the
Desired Capabilities

In the previous chapter you were briefly introduced to Desired Capabilities. This is a
core capability of Appium. In this chapter we will take a deep dive into this feature.

Desired Capabilities help us to configure the Appium server and provide the criteria
which we wish to use for running our automation script. For example, we can
request the environment (emulator or real-device), which version of the operating
system to run the test on, and more. Desired Capabilities are key/value pairs
encoded in JSON format and are sent to the Appium Server by the Appium client
when a new automation session is requested.

| HTTP Request l[: —_||>
Test | APIRequest

JSON Wire Protocol

SCI"Ipt 3 HTTP Response a p pi U m W

Figure-1:Appium Architecture.

DesiredCapabilities is a predefined library and in order to use it you need to
import:

Org.openga.selenium.remote.DesiredCapabilities

As Appium supports both Android and iOS, There are separate capabilities for
both. However most of the capabilities remain common to both platforms.

54 www.kobiton.com



Android:

{
"platformName": "Android",
"platformversion": "8.0",
"app": "/Users/username/Downloads/sample.apk",
"deviceName": "c4e3f3cda"
"automationName": "UiAutomator2"
}
iOS:
{

"platformName": "i0S",

"platformvVersion": "11.4.1",

"app": "/path/to/.ipa/file",

"deviceName": "John’s iPhone",

"udid": "bea36e2b0262ae4b77bd3463bd462922ee935d24"
"automationName": "XCUITest"

The above is the JSON representation. To use this in code you can define the Desired
Capabilities (for Android) as below:

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability("platformName"”, "Android");
dc.setCapability("platformVersion"”, "8.0");

dc.setCapability("app",
"/Users/test/Downloads/FirstAutomationTest/src/test/resources
/DemoApp.apk");

dc.setCapability("deviceName", "c4e3f3cd");

dc.setCapability("automationName", "UiAutomator2");

In the above code snippet instead of defining Capability Name in a String you can use
the Appium predefined interfaces such as MobileCapabilityType,
10SMobileCapabilityType and AndroidMobileCapabilityType to get Capability Names,
so the above code snippet can be written in a better way:

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME,

55 www.kobiton.com



"Android");
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"8.6");

dc.setCapability(MobileCapabilityType.APP,
"/Users/test/Downloads/FirstAutomationTest/src/test/resour
ces/DemoApp.apk");

dc.setCapability(MobileCapabilityType.DEVICE NAME,
"c4e3f3cd");

dc.setCapability(MobileCapabilityType.AUTOMATION_NAME,
"UiAutomator2");

Desired capabilities for iOS and Android

We have many desired capabilities at our disposal depending on what we are trying
to accomplish. However, there are specific capabilities we need to set based on what
we are trying to test:

1) Mobile Web Android.
2) Mobile Web iOS.

3) Mobile Native Android.
4) Mobile Native iOS.

1) Mobile web - Android

If you want to automate the Chrome browser on Android device then you need
to use these Desired Capabilities.

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"Android");
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"0OS version of your test device/simulator");
dc.setCapability(MobileCapabilityType.DEVICE_NAME, "Name
of your test device");

// This capability will open the Chrome browser instead of
Native app.
dc.setCapability(MobileCapabilityType.BROWSER_NAME,
MobileBrowserType.CHROME);
dc.setCapability(MobileCapabilityType.AUTOMATION_ NAME,
"UiAutomator2");

56 www.kobiton.com



2) Mobile web - i0S

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"ios");
dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"0S version of your test device/simulator");
dc.setCapability(MobileCapabilityType.DEVICE_NAME, "Name
of your test device");

// This capability will open the Safari browser instead of
Native app.

dc.setCapability(MobileCapabilityType.BROWSER_NAME,
MobileBrowserType.SAFARI);

dc.setCapability(MobileCapabilityType.AUTOMATION_ NAME,
"XCUITest");

// If you are using Real iPhone device then you need to
specify "udid" of device.

dc.setCapability("udid", "UDID of your test device");

3) Mobile native - Android

DesiredCapabilities dc = new DesiredCapabilities();

dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"Android");

dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"0S version of your test device/simulator");

dc.setCapability(MobileCapabilityType.APP,
"/path/to/.apk/file");

dc.setCapability(MobileCapabilityType.DEVICE_NAME, "Name
of your test device");

dc.setCapability(MobileCapabilityType.AUTOMATION_ NAME,
"UiAutomator2");

4) Mobile native - iOS

DesiredCapabilities dc = new DesiredCapabilities();
dc.setCapability(MobileCapabilityType.PLATFORM_NAME, "iOS");

dc.setCapability(MobileCapabilityType.PLATFORM_VERSION, "OS
version of your test device/simulator");

dc.setCapability(MobileCapabilityType.APP, "/path/to/.app or
.ipa/file");

dc.setCapability(MobileCapabilityType.DEVICE_NAME, "Name of
your test device");

57 www.kobiton.com



dc.setCapability(MobileCapabilityType.AUTOMATION_ NAME,

"XCUITest");

List of all capabilities

There are many, many capabilities that Appium supports. We can categorize the
Capabilities into 3 parts:

1) General Capabilities.
2) iOS Capabilities.
3) Android Capabilities.

While you clearly don’t need to memorize all of these, we do suggest you spend
the time to familiarize yourself with these capabilities. As you use Appium more
and more and continue to consult this list, you will eventually have a good sense
of what capabilities are available to you.

General capabilities

Capability

Description

Values

automationName

Which automation engine to use

Appium (default) or
Selendroid or
UiAutomator2 or
Espresso for Android
or XCUITest for iOS

platformName

Which mobile OS platform to use

iOS, Android, or
Firefox OS

platformVersion

Mobile OS version

eg.,7.1,44

deviceName

The kind of mobile device or emulator to use

iPhone Simulator,
iPad Simulator,
iPhone Retina 4-inch,
Android Emulator,
Galaxy S4, etc.... On

58

www.kobiton.com




i0S, this should be
one of the valid
devices returned by
instruments with
instruments -s
devices. On Android
this capability is
currently ignored,
though it remains
required.

app The absolute local path or remote http URL /abs/path/to/my.apk
to a .ipa file (10S), .app folder (10S Simulator) | or
or .apk file (Android), or a .zip file containing | http://myapp.com/ap
one of these (for .app, the .app folder must p.ipa
be the root of the zip file). Appium will
attempt to install this app binary on the
appropriate device first. Note that this
capability is not required for Android if you
specify appPackage and appActivity
capabilities (see below). Incompatible with
browserName.
browserName Name of mobile web browser to automate. 'Safari' for iOS and
Should be an empty string if automating an 'Chrome’,
app instead. 'Chromium’, or
'Browser' for Android
newCommandTi How long (in seconds) Appium will wait fora | e.g. 60
meout new command from the client before
assuming the client quit and ending the
session
language (Sim/Emu-only) Language to set for the e.g. fr
simulator / emulator. On Android, available
only on APl levels 22 and below
locale (Sim/Emu-only) Locale to set for the e.g. fr_CA
59 www.kobiton.com




simulator / emulator.

udid Unique device identifier of the connected e.g.
physical device 1ae203187fc012g
orientation (Sim/Emu-only) start in a certain orientation | LANDSCAPE or
PORTRAIT
autoWebview Move directly into Webview context. Default | true, false
false
noReset Don't reset app state before this session. See | true, false
here for more details
fullReset Perform a complete reset. See here for more | true, false
details
eventTimings Enable or disable the reporting of the timings | e.g., true
for various Appium-internal events (e.g., the
start and end of each command, etc.).
Defaults to false. To enable, use true. The
timings are then reported as events property
on response to querying the current session.
See the event timing docs for the the
structure of this response.
enablePerforman | (Web and webview only) Enable true, false
celogging Chromedriver's (on Android) or Safari's (on
i0S) performance logging (default false)
printPageSource | When a find operation fails, print the current | e.g., true

OnFindFailure

page source. Defaults to false.

60

www.kobiton.com




Android capabilities

These Capabilities are available only on Android-based drivers (like UiAutomator2 for

example).

Capability

Description

Values

appActivity

Activity name for the Android activity you
want to launch from your package. This
often needs to be preceded by a . (e.g.,
.MainActivity instead of MainActivity). By
default this capability is received from the
package manifest (action:
android.intent.action.MAIN, category:
android.intent.category.LAUNCHER)

MainActivity,
.Settings

appPackage

Java package of the Android app you
want to run. By default this capability is
received from the package manifest
(@package attribute value)

com.example.android

.myApp,
com.android.settings

appWaitActivity

Activity name/names, comma separated,
for the Android activity you want to wait
for. By default the value of this capability
is the same as for appActivity. You must
set it to the very first focused application
activity name in case it is different from
the one which is set as appActivity if your
capability has appActivity and
appPackage.

SplashActivity,
SplashActivity,OtherA
ctivity, *,

* SplashActivity

appWaitPackage

Java package of the Android app you
want to wait for. By default the value of
this capability is the same as for

com.example.android

.myApp,
com.android.settings

61

www.kobiton.com




appActivity

appWaitDuration Timeout in milliseconds used to wait for 30000
the appWaitActivity to launch (default
20000)

deviceReadyTimeou [ Timeout in seconds while waiting for 5

G

device to become ready

androidCoverage

Fully qualified instrumentation class.
Passed to -w in adb shell am instrument -
e coverage true -w

com.my.Pkg/com.my.
Pkg.instrumentation.
Mylnstrumentation

androidCoverageEn
dintent

A broadcast action implemented by
yourself which is used to dump coverage
into file system. Passed to -a in adb shell
am broadcast -a

com.example.pkg.EN
D_EMMA

androidDeviceReady | Timeout in seconds used to wait for a e.g., 30
Timeout device to become ready after booting
androidinstallTimeo | Timeout in milliseconds used to wait for e.g., 90000
ut an apk to install to the device. Defaults to

90000
androidInstallPath The name of the directory on the e.g.

device in which the apk will be push
before install. Defaults to
/data/local/tmp

/sdcard/Downloa
ds/

adbPort Port used to connect to the ADB 5037
server (default 5037)
62 www.kobiton.com




systemPort

systemPort used to connect to
appium-uiautomator2-server, default
is 8200 in general and selects one port
from 8200 to 8299. When you run
tests in parallel, you must adjust the
port to avoid conflicts. Read Parallel
Testing Setup Guide for more details.

e.g., 8201

remoteAdbHost

Optional remote ADB server host

e.g.
192.168.0.101

androidDeviceSocke Devtools socket name. Needed only e.g.,

t when tested app is a Chromium chrome_devtools
embedding browser. The socket is _remote
open by the browser and
Chromedriver connects to it as a
devtools client.

avd Name of avd to launch e.g., apil9

avdLaunchTimeout How long to wait in milliseconds for 300000
an avd to launch and connect to ADB
(default 120000)

avdReadyTimeout How long to wait in milliseconds for 300000

an avd to finish its boot animations
(default 120000)

avdArgs Additional emulator arguments used e.g., -netfast
when launching an avd
useKeystore Use a custom keystore to sign apks, true or false

default false

63

www.kobiton.com




keystorePath

Path to custom keystore, default
~/.android/debug.keystore

e.g.,
/path/to.keystore

keystorePassword Password for custom keystore e.g., foo
keyAlias Alias for key e.g., androiddebugkey
keyPassword Password for key e.g., foo
chromedriverExecut | The absolute local path to webdriver /abs/path/to/webdriv
able executable (if Chromium embedder er

provides its own webdriver, it should be

used instead of original chromedriver

bundled with Appium)
chromedriverExecut | The absolute path to a directory to look /abs/path/to/chrome

ableDir

for Chromedriver executables in, for
automatic discovery of compatible
Chromedrivers. Ignored if
chromedriverUseSystemExecutableis true

driver/directory

chromedriverChrom
eMappingFile

The absolute path to a file which maps
Chromedriver versions to the minimum
Chrome that it supports. Ignored if
chromedriverUseSystemExecutableis true

/abs/path/to/mappin
g.json

chromedriverUseSys [ If true, bypasses automatic Chromedriver | e.g., true
temExecutable configuration and uses the version that

comes downloaded with Appium. Ignored

if chromedriverExecutable is set. Defaults

to false
autoWebviewTimeo [ Amount of time to wait for Webview e.g. 4

ut

context to become active, in ms. Defaults
to 2000

64

www.kobiton.com




intentAction

Intent action which will be used to start
activity (default
android.intent.action.MAIN)

e.g.android.intent.acti
on.MAIN,
android.intent.action.
VIEW

intentCategory Intent category which will be used to start | e.g.
activity (default android.intent.catego
android.intent.category.LAUNCHER) ry.LAUNCHER,
android.intent.catego
ry.APP_CONTACTS
intentFlags Flags that will be used to start activity e.g. 0x10200000

(default 0x10200000)

optionallntentArgu
ments

Additional intent arguments that will be
used to start activity. See Intent

arguments

e.g. -—-esn
<EXTRA_KEY>, --ez
<EXTRA_KEY>
<EXTRA_BOOLEAN_V
ALUE>, etc.

dontStopAppOnRes
et

Doesn't stop the process of the app under
test, before starting the app using adb. If
the app under test is created by another
anchor app, setting this false, allows the
process of the anchor app to be still alive,
during the start of the test app using adb.
In other words, with
dontStopAppOnReset set to true, we will
not include the -Sflag in the adb shell am
start call. With this capability omitted or
set to false, we include the -S flag. Default
false

true or false

unicodeKeyboard

Enable Unicode input, default false

true or false

resetKeyboard

Reset keyboard to its original state, after
running Unicode tests with
unicodeKeyboard capability. Ignored if

true or false

65

www.kobiton.com




used alone. Default false

noSign

Skip checking and signing of app with
debug keys, will work only with
UiAutomator and not with selendroid,
default false

true or false

ignoreUnimportantV
iews

Calls the
setCompressedLayoutHierarchy()uiautom
ator function. This capability can speed
up test execution, since Accessibility
commands will run faster ignoring some
elements. The ignored elements will not
be findable, which is why this capability
has also been implemented as a toggle-
able setting as well as a capability.
Defaults to false

true or false

disableAndroidWatc
hers

Disables android watchers that watch for
application not responding and
application crash, this will reduce cpu
usage on android device/emulator. This
capability will work only with
UiAutomator and not with selendroid,
default false

true or false

chromeOptions

Allows passing chromeOptions capability
for ChromeDriver. For more information
see chromeOptions

chromeOptions:
{args: ['--disable-
popup-blocking']}

recreateChromeDriv
erSessions

Kill ChromeDriver session when moving
to a non-ChromeDriver webview. Defaults
to false

true or false

nativeWebScreensh
ot

In a web context, use native (adb)
method for taking a screenshot, rather
than proxying to ChromeDriver. Defaults

true or false

66

www.kobiton.com




to false

androidScreenshotP
ath

The name of the directory on the device
in which the screenshot will be put.
Defaults to /data/local/tmp

e.g.
/sdcard/screenshots/

autoGrantPermissio
ns

Have Appium automatically determine
which permissions your app requires and
grant them to the app on install. Defaults
to false. If noReset is true, this capability
doesn't work.

true or false

networkSpeed Set the network speed emulation. Specify | ['full’,'gsm’, 'edge’,
the maximum network upload and 'hscsd', 'gprs’, 'umts’,
download speeds. Defaults to full 'hsdpa’, 'lte’,
'‘evdo']Check -
netspeed option
more info about
speed emulation for
avds
gpsEnabled Toggle gps location provider for true or false
emulators before starting the session. By
default the emulator will have this option
enabled or not according to how it has
been provisioned.
isHeadless Set this capability to true to run the e.g., true
Emulator headless when device display is
not needed to be visible. false is the
default value. isHeadless is also support
for iOS, check XCUITest-specific
capabilities.
uiautomator2Server | Timeout in milliseconds used to wait for e.g., 20000

LaunchTimeout

an uiAutomator2 server to launch.

67

www.kobiton.com




Defaults to 20000

uiautomator2Server | Timeout in milliseconds used to wait for e.g., 20000
InstallTimeout an uiAutomator2 server to be installed.
Defaults to 20000

otherApps App or list of apps (as a JSON array) to e.g.,

install prior to running tests "/path/to/app.apk",
https://www.example
.com/url/to/app.apk,
["/path/to/app-
a.apk",
"/path/to/app-
b.apk"]

iOS capabilities

These Capabilities are available only on the XCUITest Driver and the deprecated
UlAutomation Driver.

Capability Description Values
calendarFormat (Sim-only) Calendar format to set for the e.g. gregorian
iOS Simulator
bundleld Bundle ID of the app under test. Useful for | e.g.
starting an app on a real device or for io.appium.TestApp

using other caps which require the bundle
ID during test startup. Torun a teston a
real device using the bundle ID, you may
omit the 'app' capability, but you must

provide 'udid'.
udid Unique device identifier of the connected | e.g.
physical device 1ae203187fc012g

68 www.kobiton.com




launchTimeout

Amount of time in ms to wait for
instruments before assuming it hung and
failing the session

e.g. 20000

locationServicesEnab
led

(Sim-only) Force location services to be
either on or off. Default is to keep current
sim setting.

true or false

locationServicesAuth
orized

(Sim-only) Set location services to be
authorized or not authorized for app via
plist, so that location services alert doesn't
pop up. Default is to keep current sim
setting. Note that if you use this setting
you MUST also use the bundleld capability
to send in your app's bundle ID.

true or false

autoAcceptAlerts

Accept all iOS alerts automatically if they
pop up. This includes privacy access
permission alerts (e.g., location, contacts,
photos). Default is false. Does not work on
XCUITest-based tests.

true or false

autoDismissAlerts

Dismiss all iOS alerts automatically if they
pop up. This includes privacy access
permission alerts (e.g., location, contacts,
photos). Default is false. Does not work on
XCUITest-based tests.

true or false

nativelnstrumentsLib

Use native intruments lib (ie disable
instruments-without-delay).

true or false

nativeWebTap (Sim-only) Enable "real", non-javascript- true or false
based web taps in Safari. Default: false.
Warning: depending on viewport size/ratio
this might not accurately tap an element
69 www.kobiton.com




safarilnitialUrl

(Sim-only) (>=8.1) Initial safari url, default
is a local welcome page

e.g.
https://www.github.
com

safariAllowPopups

(Sim-only) Allow javascript to open new
windows in Safari. Default keeps current
sim setting

true or false

safarilgnoreFraudWa
rning

(Sim-only) Prevent Safari from showing a
fraudulent website warning. Default keeps
current sim setting.

true or false

safariOpenLinksInBa
ckground

(Sim-only) Whether Safari should allow
links to open in new windows. Default
keeps current sim setting.

true or false

keepKeyChains

(Sim-only) Whether to keep keychains
(Library/Keychains) when appium session
is started/finished

true or false

localizableStringsDir | Where to look for localizable strings. en.lproj
Default en.lproj

processArguments Arguments to pass to the AUT using e.g., -myflag
instruments

interKeyDelay The delay, in ms, between keystrokes sent | e.g., 100

to an element when typing.

showl|OSLog

Whether to show any logs captured from a
device in the appium logs. Default false

true or false

70

www.kobiton.com




sendKeyStrategy

strategy to use to type test into a test

oneByOne, grouped

field. Simulator default: oneByOne. Real or setValue
device default: grouped

screenshotWaitTime | Max timeout in sec to wait for a e.g,5

out screenshot to be generated. default: 10

waitForAppScript The ios automation script used to e.g. true;,
determined if the app has been launched, | target.elements().le
by default the system wait for the page ngth > 0;,

source not to be empty. The result must
be a boolean

S.delay(5000); true;

webviewConnectRet
ries

Number of times to send connection
message to remote debugger, to get
webview. Default: 8

eg., 12

appName The display name of the application under | e.g., UlCatalog
test. Used to automate backgrounding the
app iniOS 9+.
customSSLCert (Sim only) Add an SSL certificate to 10S e.g.
Simulator.
----- BEGIN
CERTIFICATE-----

webkitResponseTim
eout

(Real device only) Set the time, in ms, to
wait for a response from WebKit in a Safari
session. Defaults to 5000

e.g., 10000

71

www.kobiton.com




remoteDebugProxy

(Sim only, <= 11.2) If set, Appium sends
and receives remote debugging messages
through a proxy on either the local port
(Sim only, <= 11.2) or a proxy on this unix
socket (Sim only >=11.3) instead of
communicating with the iOS remote

debugger directly.

e.g. 12000 or
" /tmp/my.proxy.soc
ket"

Important capabilities

1) Reset strategies

In Mobile Application Automation, most of the execution time is spent on
Application installation. Sometimes you do not want to reinstall the
application (like between tests) so Appium has provided 2 capabilities named
noReset and fullReset which provides control over application installation
and you can leverage the right combination of the two flags.

Do not destroy simulator. Do
not uninstall app from real
device.

noReset | fullReset | Result oniOS Result on Android

true true Error: The 'noReset' and 'fullReset' capabilities are mutually
exclusive and should not both be set to true

true false Do not destroy or shut down Do not stop app, do not clear
simulator after test. Start tests app data, and do not uninstall
running on whichever simulator | apk.
is running, or device is plugged
in.

false true Uninstall app after real device Stop app, clear app data and
test, destroy Simulator after sim | uninstall apk after test.
test.

false false Shut down simulator after test. | Stop and clear app data after

test. Do not uninstall apk

NOTE: You can know more about Appium Capabilities on Official Appium Docs
periodically: http://appium.io/docs/en/writing-running-appium/caps/

72

www.kobiton.com




The following additional capabilities are reprinted with permission from Jonathan
Lipps, Founding Principal of Cloud Grey, a mobile testing services company. Refer
to footnote for the source link.

2) Android-specific capabilities?®

disableAndroidWatchers:

The only way to check for toast messages on Android is for the Appium
UiAutomator2 driver to run a loop constantly checking the state of the
device. Running a loop like this takes up valuable CPU cycles and has been
observed to make scrolling less consistent, for example. If you don't need the
features that require the watcher loop (like toast verification), then set this
cap to true to turn it off entirely and save your device some cycles.

autoGrantPermission:

Set to true to have Appium attempt to automatically determine your app
permissions and grant them, for example to avoid system pop ups asking for
permission later on in the test.

skipUnlock:

Appium doesn't assume that your device is unlocked, and it should be to
successfully run tests. So it installs and runs a little helper app that tries to
unlock the screen before a test. Sometimes this works, and sometimes this
doesn't. But that's beside the point: either way, it takes time! If you know
your screen is unlocked, because you're managing screen state with
something other than Appium, tell Appium not to bother with this little
startup routine and save yourself a second or three, by setting this cap to
true.

appWaitPackage and appWaitActivity:

Android activities can be kind of funny. In many apps, the activity used to
launch the app is not the same as the activity which is active when the user
initially interacts with the application. Typically it's this latter activity you care
about when you run an Appium test. You want to make sure that Appium
doesn't consider the session started until this activity is active, regardless of
what happened to the launch activity.

In this scenario, you need to tell Appium to wait for the correct activity, since
the one it automatically retrieves from your app manifest will be the launch
activity. You can use the appWaitPackage and appWaitActivity to tell Appium
to consider a session started (and hence return control to your test code)
only when the package and activity specified have become active. This can

Y From Jonathan Lipps’ blog: https://appiumpro.com/editions/24

73 www.kobiton.com



greatly help the stability of session start, because your test code can assume
your app is on the activity expects when the session starts.

ignoreUnimportantViews:

Android has two modes for expressing its layout hierarchy: normal and
"compressed". The compressed layout hierarchy is a subset of the hierarchy
that the OS itself sees, restricted to elements which the OS thinks are more
relevant for users, for example elements with accessibility information set on
them. Because compressed mode generates a smaller XML file, and perhaps
for other Android-internal reasons, it's often faster to get the hierarchy in
compressed mode. If you're running into page source queries taking a very
long time, you might try setting this cap to true.

Note that the XML returned in the different modes is ... different. Which
means that XPath queries that worked in one mode will likely not work in the
other. Make sure you don't change this back and forth if you rely on XPath!

3) i0S-specific capabilities?

usePrebuiltWDA and derivedDataPath:

Typically, Appium uses xcodebuild under the hood to both build
WebDriverAgent and kick off the XCUITest process that powers the test
session. If you have a prebuilt WebDriverAgent binary and would like to save
some time on startup, set the usePrebuiltWDA cap to true. This cap could be
used in conjunction with derivedDataPath, which is the path to the derived
data folder where your WebDriverAgent binary is dumped by Xcode.

useJSONSource:

For large applications, it can be faster for Appium to deal with the app
hierarchy internally as JSON, rather than XML, and convert it to XML at the
"edge", so to speak---in the Appium driver itself, rather than lower in the
stack. Basically, give this a try if getting the iOS app source is taking forever.

iosinstallPause:

Sometimes, large iOS applications can take a while to launch, but there's no
way for Appium to automatically detect when an app is ready for use or not.
If you have such an app, set this cap to the number of milliseconds you'd like
Appium to wait after WebDriverAgent thinks the app is online, before
Appium hands back control to your test script. It might help make session
startup a bit more stable.

maxTypingFrequency:
If you notice errors during typing, for example the wrong keys being pressed

2 Jonathan Lipps’ blog: https://appiumpro.com/editions/24

74 www.kobiton.com



or visual oddities you notice while watching a test, try slowing the typing
down. Set this cap to an integer and play around with the value until things
work. Lower is slower, higher is faster! The default is 60.

realDeviceScreenshotter:

Appium has its own methods for capturing screenshots from simulators and
devices, but especially on real devices this can be slow and/or flaky. If you're
a fan of the libimobiledevice suite and happen to have idevicescreenshot on
your system, you can use this cap to let Appium know you'd prefer to retrieve
the screenshot via a call to that binary instead of using its own internal
methods. To make it happen, simply set this cap to the string
"idevicescreenshot"!

simplelsVisibleCheck:

Element visibility checks in XCUITest are fraught with flakiness and
complexity. By default, the visibility checks available don't always do a great
job. Appium implemented another type of visibility check inside of
WebDriverAgent that might be more reliable for your app, though it comes
with the downside that the checks could take longer for some apps. As with
many things in life, we sometimes have to make trade-offs between speed
and reliability.

NOTE: You can learn more about Android & iOS specific Capabilities on Jonathan
Lipps’ (Appium project lead and architect) blog:
https://appiumpro.com/editions/24

We suggest reviewing these capabilities and familiarize yourself with them. It
isn’t necessary to memorize them, but as you get more sophisticated testing
needs it will be good to keep coming back here to see which one will do the trick.
We’'ll be using various forms of these capabilities throughout the rest of the book
so you will start getting more familiar with them as we work through more
examples.

75

www.kobiton.com



Chapter-4: Appium Locator
Finding Strategies

Understanding how to properly use Locators is key to building your automation
scripts. After all, if you’re unable to “find” the Ul element, you cannot control it (such
as clicking a button).

In Mobile (or Web) Automation Testing automating any scenario follows these 2
steps:

1) Find the Ul element locators (uniquely).
2) Perform an action on that element.

In this chapter we focus on the first step and will look into all the available Locator
Finding Strategies and discuss each strategy’s pros and cons.

So What is an Element Locator?

An Element Locator is nothing but an address that identifies a Ul Element on a
Mobile App (or Website). As there are many Ul elements present on a single mobile
application screen there can be a chance that same (generic)address can refer to
more than one element. This means that we need to find a unique address for the
element. As you will see, sometimes this is easy, and other times you have to do
some further exploration to uniquely identify your Ul element. The way in which you
uniquely identify the element is called a locator strategy. Appium makes many
different strategies available.

If you recall our simple test cases in Chapter 2, our Android example used the
following code for identifying the Textview:

driver.findElement(By.id("Login Screen")).click();

Here id is the Locator strategy and Login Screen is the unique id(address). Think
of reading it as “Finding the element by <locator strategy> <element unique id>". So
in this example we’re telling Appium to use the “id” strategy (used for finding
elements by unique ID) and the ID we’re using is “Login Screen”.

76 www.kobiton.com



The below image describes how can you find the Textview element for any android
pplication (in Java).

driver.findElement(By.className(“android.widgt.TextView”));

| t

Locator Strategy Selector String

Figure-1:Locator Strategy(Java Example).

As you may expect, there are many different locator strategies available to you,
including:

1) Accessibility ID

2) Class name

3) ID

4) Name

5) XPath

6) Image (Recently Introduced)

7) Android UiAutomator (UiAutomator2 only)

8) Android View Tag (Espresso only)

9) 10S UlAutomation

Learning which type of Locator Strategy to use is part of the learning process of
becoming comfortable with Appium. We will go through all Locator Strategies and
discuss them in detail. Don’t worry about memorizing all of them ... at this stage in
your journey you just need to become familiar with them and eventually you’ll
understand which are best to use in which scenarios. In fact, there are some tricks
coming up later that will automatically suggest which strategy to use! Often during
your script development you’ll wrestle with trying to identify a Ul element. When
that happens, refer back to these different locator strategies to see which might best
fit your needs.

NOTE: All of the above Locator Strategies can be inspected using the Appium
Inspector Tool(for Android and iOS both). We will learn about that tool in the next
chapter. The screenshots that follow are using this Inspector to illustrate the locator.
The mobile app is depicted in the leftmost pane and when clicking an element we see
the attributes in the rightmost pane.

1) Accessibility ID
® This is the best preferred locator strategy in Appium. Always use this
one if you can.

77 www.kobiton.com



e [tis a Cross-platform locator strategy as this works in a similar way
on i0S and Android which makes your code more reusable.

e iOS:Ifthe accessibility id property(attribute) value is set at
development time (by the app developers) then you can inspect it
using the Appium Inspector(Android & iOS) or
UiAutomatorViewer(Android). When Accessibility Id property
value is not defined by developer, it is by default equals to the Name
of that Ul Element.

e Android: Accessibility Id property is equals to content-desc
property(attribute) on Android.

[ NON ]
Bl- = <c¢oaex

o © :d 88% @ 10:21

B App Source © Selected Element
p!

ello o e
Tap Send Keys Clear

v <android.widget.FrameLayout>

*) S v <android.widget.LinearLayout>
+ <android.widget.FrameLayout> Find By Selector
<android.widget. TextView resource-id="android:id/title"> T e
accessibility id b

Show Progress Bar for a while [JRVIEIELL v <android.widget.FrameLayout resource-id="android:id/content">
v <android.widget.LinearLayout> io.selendroid.testap
Display text view L . id p:id/buttonStartWeb

<android.widget. TextView> view

Press to throw
unhandled

i <android.widget.LinearLayout content-desc="110nCD" resourc
Displays a Toast D'swia"ydi&pw //android.widget.Ima

exception v <android.widget.LinearLayout content-desc="imageViewCD" r th geButton[@content-
xpa W
<android.widget.ImageButton content-desc="buttonStartW desc="buttonStartW
Type to throw unhandled exception ebviewCD"]

<android.widget.ImageButton content-desc="startUserReg

Display and focus on layout <android.widget.EditText content-desc="my_text_fieldCD" res Attribute Value

<android.widget.LinearLayout content-desc="imageViewCD" r

index 0
» <android.widget.LinearLayout content-desc="visibleTestArea(
text
» <android.widget.LinearLayout content-desc="visibleTestArea(
<android.widget.EditText resource-id="io.selendroid.testapp:i class android.widget.Imag

eButton
<android.widget.TextView resource-id="io.selendroid.testapp:
io.selendroid.testap
<android.widget.Button resource-id="io.selendroid.testapp:id/ package o

buttonStartWebview
content-desc

CD
checkable false
checked false
clickable true

>
enabled true

Figure-2:Locator Type: Accessibility Id on Android Sample Application.

Example Usage in different programming languages:

1) Java:

WebElement chromeButtonElement =
driver.findElementByAccessibilityId(“buttonStartWebviewCD”);

MobileElement mobileElement =

78 www.kobiton.com




(MobileElement)chromeButtonElement;

2) Python:

element = self.driver.
find_element_by accessibility id(“buttonStartWebviewCD”)

3) JavaScript:

let element = await driver.
elementByAccessibilityId(“buttonStartWebviewCD”);

4) Ruby:

@driver.find_element(:accessibility id,
"~buttonStartWebviewCD")

5) PHP:

$els = $this->element($this->using('accessibility id")-
>value( ‘buttonStartWebviewCD’));

2) Class Name

e Finding an element using Class Name is generic and it does not
guarantee to find the unique element because many elements have
the same class name.

e i0S: IniOS the class name is the fully qualified name of UlAutomation
class, and it starts with “UIA” keyword such as UIAButton,
UIARadioButtonand UIATextField for old versions of iPhone
Apps, and on recent versions made on Swift programming language
you can find the “XCUITest” keyword.

e Android: In Android, the class name is the fully qualified name of the
UlAutomator class and these are examples of it:
android.widget.TextView , android.widget.Button,
android.widget.ImageButton, android.widget.CheckBox
etc.

e Now, in the above image (fig. 2), as you can see for the Chrome
Button the class name is android.widget.ImageButton whichis

79 www.kobiton.com



same for the User Registry button. Which leaves the question, how do
you get the right button? The answer is using “Indexing”

e Infigure-2 above the index value of the Chrome Image Button is O
while in below image you can see the index value of User Registry
Image button is 1, so by combination of locator and Index you can get
the needed Unique Ul locator. This is NOT ADVISABLE as it does not
provide stability. There is a strong likelihood of indexes changing, for
example if a new Image button is added to the screen!).

Show Progress Bar for a while IRV

Display text view

Press to throw
unhandled
exception

Display Popup

Displays a Toast Window

Type to throw unhandled exception

V%
Display and focus on layout

Bl- - <coae

B App Source

v <android.widget.FrameLayout>
v <android.widget.LinearLayout>

v <android.widget.FrameLayout>

<android.widget.TextView resource-id="android:id/title">

v <android.widget.FrameLayout resource-id="android:id/content">

v <android.widget.LinearLayout>

<android.widget.TextView>

» <android.widget.LinearLayout content-desc="110nCD" resourc

v <android.widget.LinearLayout content-desc="imageViewCD" r

<android.widget.ImageButton content-desc="buttonStartw

<android.widget.ImageButton content-desc="startUserReg

<android.widget.EditText content-desc="my_text_fieldCD" res

<android.widget.EditText resource-id="io.selendroid.testapp:ir
<android.widget.TextView resource-id="io.selendroid.testapp:

<android.widget.Button resource-id="io.selendroid.testapp:id/

<android.widget.LinearLayout content-desc="imageViewCD" r
<android.widget.LinearLayout content-desc="visibleTestArea(

<android.widget.LinearLayout content-desc="visibleTestArea(

© Selected Element

Tap SendKeys Clear

Find By Selector

R startUserRegistratio
accessibility id
nCD

io.selendroid.testap
id p:id/startUserRegistr
ation

//android.widget.Ima
geButton[@content-

xpath
P desc="startUserRegi
strationCD"]
Attribute Value
index 1
text
android.widget.Imag
class
eButton
io.selendroid.testap
package

p

startUserRegistratio
content-desc

nCD
checkable false
checked false
clickable true
enabled true

Figure-3: Index of class Name: android.widget.ImageButton

® You can get the indexed values using the relevant programming
languages methods.

e This JAVA code will get the User Registry Image Button which has
Class name= android.widget.ImageButton and Index=2.

List<MobileElement> mobileElements = (MobileElement)
driver.findElementsByClassName(“android.widget.ImageButton®);

MobileElement mobileElement = mobileElement.get(1);

80

www.kobiton.com




NOTE: Actually You can get locators by two ways in Appium (for id, name,
className, and xpath).

1) Using Selenium Methods:

WebElement element =
driver.findElement(By.className(“android.widget.ImageButton™)

)3
// OR

WebElement element =
driver.findElementByClassName(“android.widget.ImageButton”);

2) Using Appium (Selenium Wrapper) Methods:

MobileElement mobileElement = (MobileElement)
driver.findElement(By.className(“android.widget.ImageButton™)

)3
// OR

MobileElement mobileElement = (MobileElement)
driver.findElementByClassName(“android.widget.ImageButton”);

3) ID

In Mobile Application Automation id is are in form of Native context, it is not
similar to Selenium WebDriver’s CSS id.

e id are also cross-platform locator strategy similar like
accessibility id.

e i0S: It will find elements by name and 1abel attribute but before
that Appium will try to search fora accessibility id that will
match with the given id string.

® For Figure-4 screenshot below both locator strategies are valid.

driver.findElementById("IntegerA");

// OR

driver.findElementById("TextFieldl");

81 www.kobiton.com



Bl- s «<c¢coae

- s

]

Compute Sum

7??

show alert cont...t alert locati...alert

Label 1

Label 2

Location
Test Gesture Crash

A test label

Check calendar authorized

Figure-4:Locator Type:ld on iOS Sample Application.

v <XCUIElementTypeApplication name="TestApp">
<XCUIElementTypeOther>
v <XCUIElementTypeWindow>
v <XCUIElementTypeOther>

X

© Selected Element

Tap Send Keys Clear

Find By

accessibility id

Selector

IntegerA

<XCUIElementTypeTextField name="IntegerA">
<XCUIElementTypeTextField name="IntegerB">
<XCUIElementTypeButton name="ComputeSumButton">
<XCUIElementTypeStaticText name="Answer">
<XCUIElementTypeButton name="show alert">
<XCUIElementTypeButton name="contact alert">
<XCUIElementTypeButton name="location alert">
<XCUIElementTypeStaticText name="AppElem">
<XCUIElementTypeSlider name="AppElem">
<XCUIElementTypeStaticText name="AppElem">
<XCUIElementTypeButton name="DisabledButton">
<XCUIElementTypeStaticText>
<XCUIElementTypeSwitch name="locationStatus">
<XCUIElementTypeButton name="Test Gesture">
<XCUIElementTypeButton name="Crash">

<XCUIElementTypeStaticText name="Access'ibility">

<XCUIElementTypeButton name="Check calendar authorized">

» <XCUIElementTypeWindow>

//XCUIElementTypeTex

xpath tField[@name="Integer
A"
Attribute Value

XCUIElementTypeText
type

Field
name | IntegerA
label fextField1
enabled true
visible true
X 119
y 17
width 115
height 38

e Android: In Android, it’s resource-id attribute. It contains
common <package-name>:id/<id-name> string format.

® You can use either that full string (ex.
io.selendroid.testapp:id/startUserRegistration) or only <id-name>
(startUserRegistration). So in the below code both options are valid.

driver.

findElementById("io.selendroid.testapp:id/startUserRegistrati

on");

// OR

driver.findElementById("startUserRegistration");

82

www.kobiton.com




o ¢« 0l e Q B x

B App Source ® Selected Element
index 1
v <android.widget.FrameLayout> text

v <android.widget.LinearLayout> -
android.widget.|

» <android.widget.FrameLayout> class mageButton
Show Progress Bar for a while [ ERSEIERRE v <android.widget.FrameLayout resource-id="android:id/content . .
K io.selendroid.tes
I . ackage
Display text view v <android.widget.LinearLayout> P 9 tapp

<android.widget.TextView> .
Press to throw 9 startUserRegistr
unhandled

exception

Display Popup content-desc

Alallyi e v <android.widget.LinearLayout content-desc="110nCD" re ationCD

<android.widget.TextView> checkable false
Type to throw unhandled exception

<android.widget.Button content-desc="buttonTestCI
checked false

Display and focus on layout v <android.widget.LinearLayout content-desc="imageViev "
clickable true

<android.widget.ImageButton content-desc="button!

enabled true

<android.widget.ImageButton content-desc="startUs
focusable true

<android.widget.EditText content-desc="my_text_fieldC
focused false

» <android.widget.LinearLayout content-desc="imageViev
scrollable false

» <android.widget.LinearLayout content-desc="visibleTes

» <android.widget.LinearLayout content-desc="visibleTes long-clickable  false

<android.widget.EditText resource-id="io.selendroid.tes password false

<android.widget.TextView resource-id="io.selendroid.te selected false

<android.widget.Button resource-id="io.selendroid.teste [540,306][1080,46
bounds 5

io.selendroid.tes
resource-id tapp:id/startUser
Registration

instance 1

Figure-5:Locator Type:ld on Android Sample Application.

4) Name

e iOS & Android: It's the Name of the element on both platforms. This
isn’t used as oftenas accessibility id and id strategies are
mostly used.

® In below image you can find the Name attribute using:

MobileElement element = driver.findElementByName("IntegerA");

83 www.kobiton.com



[ NON J
Bl- s/ <« ¢coae x

8:34 -
B App Source © Selected Element
‘ Tap Send Keys Clear
v <XCUIElementTypeApplication name="TestApp">
<XCUIElementTypeOther> Find By Selector
Compute Sum v <XCUIElementTypeWindow> R
accessibility id  IntegerA
72? v <XCUIElementTypeOther>
<XCUIElementTypeTextField name="IntegerA"> //XCU\E\.ementTy
show alert cont..talert locati...alert xpath peTextField[@na
<XCUIElementTypeTextField name="IntegerB"> me="IntegerA"]
Label 1
<XCUIElementTypeButton name="ComputeSumButton">
Label 2 <XCUIElementTypeStaticText name="Answer"> Attribute Value
<XCUIElementTypeButton name="show alert"> . XCUIElementTyp
Location ype :
<XCUIElementTypeButton name="contact alert"> eTextField
Test Gesture Crash
A test label <XCUIElementTypeButton name="location alert"> name [integerA|
Check calendar authorized <XCUIElementTypeStaticText name="AppElem"> label TextField1

<XCUIElementTypeSlider name="AppElem"> enabled true

<XCUIElementTypeStaticText name="AppElem"> Jisible true
<XCUIElementTypeButton name="DisabledButton"> >
X 118

Figure-6: Locator Type:Name on iOS Sample Application.

5) XPath

e This locator strategy analyzes the XML structure of the app and
locates the element with respect to the other elements.

e The XPath is originally designed to allow for the navigation of XML
data with the purpose of locating unique Ul elements.

® XPath selectors are not cross-platform.

e This strategy should only used when there is no Accessibility Id, Id or
Name assigned to an Ul Element. XPath has performance and
stability issues but is very “brittle” changing across platforms and
even device manufacturers.

e This strategy comes to the rescue when you’ve tried the above
strategies and failed. As it depends on Parent XML nodes it’s really
very fragile because when any new Ul element gets added or
removed, the XML structure is changed rendering your locators
broken.

o Now the question is why you would ever use XPath ?
o Itallows for the formulation of complex queries.

o It can literally find any Ul element in the XML structure
available to Appium. So even if no ID or Name is present, you
can still find it with XPath.

84 www.kobiton.com




If you are using the Appium Inspector for inspection of the Application
XML structure then Appium will give you the XPath directly without

any extra effort.

777

A:D3<—CJ©Q><

)
1

B App Source

v <XCUIElementTypeApplication name="TestApp">
<XCUIElementTypeOther>
v <XCUIElementTypeWindow>
v <XCUIElementTypeOther>

<XCUIElementTypeTextField name="IntegerA">

show alert cont...t alert locati...alert

Label 1

Label 2

Location
Test Gesture

<XCUIElementTypeTextField name="IntegerB">
<XCUIElementTypeButton name="ComputeSumButton">
<XCUIElementTypeStaticText name="Answer">
<XCUIElementTypeButton name="show alert">

Grash <XCUIElementTypeButton name="contact alert">
rasl

© Selected Element

Find By

accessibility id

Selector

ComputeSumBut
ton

xpath

J/XCUIElementTy
peButton[@nam
e="ComputeSum
Button"]

Attribute

Value

XCUIElementTvp

Figure-7: Locator Type:XPath on iOS Sample Application.

Using XPath you can use any attribute or/and combination of

attributes in order to find the element uniquely. Apart from the

above Xpath in the screenshot, all of the following XPaths are valid

and find the Compute Sum button uniquely.

MobileElement computeSumButton = driver.findElementByXPath
("//XCUIElementTypeButton[@name="ComputeSumButton"]");

// OR

MobileElement computeSumButton =
driver.findElementByXPath (" (//XCUIElementTypeButton)[1]");

// OR

MobileElement computeSumButton = driver.findElementByXPath
("//XCUIElementTypeButton[@label="Compute Sum']");

® You can learn more about how you can find the Xpath from:
https://www.w3schools.com/xml/xpath syntax.asp, and from this
link you can learn more about how you can properly use XPath with

85

Appium:

http://www.software-testing-tutorials-automation.com/2015/10/ ui-

automator-viewer-get-android-app.htm

www.kobiton.com




6) Image

® Appium supports Image Comparison as a locator strategy which is
using the OpenCV library in the backend.

e The strings which are being used by this locator strategy are Base64-
encoded image files.

® Soyou need to convert image files into Baseb4-encoded image files
first and you need to pass that String into the locator.

e Below is the example:

String base64Image
to Base-64 String

WebElement element

//Code which will to convert Image file

driver.findElementByImage(base64Image);

e We will look into this locator strategy in more details in a dedicated
chapter later on.

7) Android UiAutomator (UiAutomator2 only)
e This is an Android Platform specific locator strategy.

e This is rarely used to find the element locators as it requires to have
prior knowledge of the UiSelector API (and of course it’s Android
only).

e |t's performance is slightly better than XPath.

e In this example we find the first Button element having the text Login:

String selector = "new UiSelector().text(“Cancel”))
.className(“android.widget.Button®))";

MobileElement element = (MobileElement)
driver.findElement(MobileBy.AndroidUIAutomator(selector));

8) Android View Tag (Espresso only)

e This is also an Android Platform specific locator strategy.

86 www.kobiton.com



e Itlocates an element using it’s view tag.

9) 10S UlAutomation

e This is iOS Platform specific locator strategy. It uses Apple’s
Instruments framework.

e |t performs better than XPath.

e Example:

String selector = "**/XCUIElementTypeCell[ name BEGINSWITH
"P" " ]/XCUIElementTypeButton[4]";

MobileElement element = (MobileElement)
driver.findElement(MobileBy.i0SClassChain(selector));

e Inthe above example we will find the 4th button anywhere under the
Ul hierarchy and whose name begins with the character ‘P’.

Hopefully you’re starting to get an idea of when to use which locator. Don’t worry if
it isn’t immediately clear ... the more you start building Appium scripts and the more
you keep reviewing these it will become more intuitive.

Generally speaking you will find you should mostly likely use Accessibly Id and Id
automation strategies. XPath is incredibly flexible as a fallback when no ID exists, but
tends to be brittle. Your best option is to work with the developers to add unique IDs
if they don’t exist. This will make for far more robust test scripts.

87 www.kobiton.com



Chapter-5: The Appium
Inspector

As you learned in the previous chapter, In order to perform automation it’s
necessary to locate the unique selectors for:

1) Mobile Applications and
2) Mobile Web Browser(Chrome).

However, if you haven’t already realized (you soon will!), finding these unique
elements can sometimes be painful. And this is where the Appium Inspector comes
into play.

Appium inspection is known by many names such as Element Extraction, Ul Element
Identification, Locator Finding etc. It is the process by which which you can locate or
find elements in your mobile application (native only).

Appium inspection is a standard procedure to identify the Ul elements of a mobile
app uniquely. It works with both real devices or simulators(iOS) or
emulators(Android).

NOTE: The Appium Inspection tool does not support finding the locators on Web
Browser(Chrome) as it is specifically designed to fetch the attributes for Native
Mobile Application only.

The Appium Desktop Application is a combination of the Appium server itself and the
Element inspector, which is designed to help you discover all the visible elements of
your mobile application while developing your test scripts.

You can use it for native apps...

1) To identify and understand the element hierarchy: For developers this may
be trivial but for testers it is definitely useful information on how certain Ul
elements are aligned with each other and what other layers/fragments/etc
the app may have.

2) To find the name, description, value and other attributes of the

element/object: Objects have certain characteristics that can be identified
through this tool and then used with the xpath command.

88 www.kobiton.com



3) To record your manual actions with the app: In order to record your actions,
you need either the Appium Inspector or some other tool that can access
those elements.

Different element inspector tools that helps you to
identify elements in mobile app

There are many different tools that help you inspect elements in mobile apps. But
we will cover the most important and used Element Inspectors:

1) Appium Inspector:

You can use this inspector for both Android and iOS apps (for iOS apps, you
would need a Mac)

2) UiAutomatorViewer(Android):

This is a tool provided by Android Studio that lets you inspect elements in
your mobile app.

There is one important factor in that the way you inspect elements in mobile
app is exactly the same in UlAutomatorViewer and Appium Desktop
Inspector. The are slight differences in the Ul of both the tools, but the
underlying logic of identifying elements remains the same.

Appium Desktop Inspector uses the same methods as Ul Automator Viewer
to identify the elements in your mobile app:

Find element by ID

Find element by ClassName
Find element by Accessibility ID
Find element by XPath

Also, the properties of the mobile elements, such as resource-id, content-
desc, text etc, will be the same in both the tools. We will explore
UlAutomatorViewer(For Android) in the next chapter.

3) Accessibility Inspector(iOS):
The Accessibility Inspector is a tool that shows all of the properties and

values, methods (actions that can occur from elements on the screen), and
position of the object that's currently being selected on the screen.

89 www.kobiton.com



In this chapter we will discuss the most used and popular tools to find the unique
and correct element locator.

Element extraction on mobile native applications using
Appium Inspector

Now let’s discuss how you can extract the elements using Appium Inspector:
1) Open the Appium Desktop Application:

[ NON ) Appium

@ appium

m Advanced @ Presets

Host 0.0.0.0

Port 4723

Start Server v1.8.1

Edit Configurations &

Figure-1: Appium Desktop Application.

2) Start the Server by clicking on the Start Server button

90 www.kobiton.com



[ NON ) Appium

[Appium] Welcome to Appium v1.8.1

[Appium] Appium REST http interface listener started on 0.0.0.0:4723

Figure-2: Appium Server Is Running.

3) Click on the Search button and open the Appium Inspector Session.
{ JON )

Automatic Server Custom Server @ SAUCELABS "% TestObject (© BrowserStack

Will use currently-running Appium Desktop server at http://localhost:4723

> Advanced Settings

Desired Capabilities Saved Capability Sets (12 Attach to Session...

text v .
ex JSON Representation

{

A

& Desired Capabilities Documentation Save As... Start Session

Figure-3: Appium Inspector Session.

4) As we discussed in Chapter 3 you need to provide the correct set of Desired
Capabilities.

Android:

"platformName": "Android",

"platformVersion"”: "8.1", //<<Android Version of connected
Device>>

"app": "/path/to/.apk/file",

"deviceName": "c33143r", //<<get device name using: $ adb
devices>>

"automationName": "UiAutomator2"

91 www.kobiton.com



iOS(Real Device):

"platformName": "i0S",

"platformVersion": "11.4",

"app": "/path/to/.ipa/file",

"deviceName": "John’s iPhone", //<<get it using iTunes>>

"udid": "bea36e2b0262ae4b77bd3463bd462922ee935d24", //<<get
it using iTunes>>

"automationName": "XCUITest"

iOS(Simulator):

"platformName": "i0S",
"platformvVersion": "11.4",

app": "/Users/username/Downloads/sample.ipa",

"deviceName": "iPhone X", //<<(iPhone 7, iPhone 7 Plus
etc..)You can get devices from: "$ instruments -s devices">>

"automationName": "XCUITest"

Below are the screenshots of Desired Capabilities for Android(Real Device) and
iOS(Real Device and Simulator).

Will use currently-running Appium Desktop server at http://localhost:4723

> Advanced Settings

Desired Capabilities Saved Capability Sets (12) Attach to Session...
text v i .
platformName Android W JSON Representation
platformVersion text 4 8.0 )
{
app filepath v JUsers/test/Down = [ i} “platfornName”: “Android",
"platformversion": "8.0",
"app": "/Users/test/Downloads/abc.apk",
deviceName text v c4e3f3cd i} "deviceName": "c4e3f3cd"
}
+
& Desired Capabilities Documentation Save As...

Automatic Server Custom Server @ SAUCELABS "% TestObject 1eadsp (® BrowserStack

IN

92 www.kobiton.com




Figure-4: Android Desired Capabilities for Real Android Device.

[ ] ( J
Automatic Server Custom Server @ SAUCELABS "% TestObject headspin (© BrowserStack
Will use currently-running Appium Desktop server at http://localhost:4723
> Advanced Settings
Desired Capabilities Saved Capability Sets (12) Attach to Session...
text v i -
platformName X 08 @ JSON Representation
platformVersion text v 12.0 m
{ 2
deviceName filepath v iPhone XS i} “platfornName”: "i0S",
"platformversion™: "12.0",
"deviceName": "iPhone XS",
udid text v 1ewscf0f952asdab3811 [ "udid": "lew5cf@f952asdab3811662b6eeccc8cId849e7e31"
}
+
& Desired Capabilities Documentation Save Save As... m
Figure-5: iOS Desired Capabilities for Real iOS Device.
[ JON J
Automatic Server Custom Server @ SAUCELABS "% TestObject headspin @© BrowserStack
Will use currently-running Appium Desktop server at http://localhost:4723
> Advanced Settings
Desired Capabilities Saved Capability Sets (12) Attach to Session...
latfi N text v i .
platiormiame 08 @ JSON Representation
platformVersion text v 1.4 )
t 2
app filepath v /Users/test/ideaP [ @ platformName " ios",
"platformVersion": "11.4",
"app:
deviceName text v iPhone X T "/Users/test/IdeaProjects/Appium_I0S_Framework/src/app/CloudTimerTest.app",
"deviceName": "iPhone X"
+ }

& Desired Capabilities Documentation

Save As...

Figure-6: iOS Desired Capabilities for iOS Simulator.

93 www.kobiton.com




5) You can also save the Desired Capabilities for a particular configuration by

clicking on the Save/Save As.. button.

Automatic Server

Custom Server

Will use currently-running Appium Desktop server at http://localhost:4723

> Advanced Settings

Desired Capabilities

Saved Capability Sets (12)

Attach to Session...

Capability Set

cloudTimer_iOS

Android

iPhone6S

iPhone6

iPhone7

Created

2018-08-29

2018-09-04

2018-09-12

2018-09-12

2018-09-13

& Desired Capabilities Documentation

Actions Android
Z W {
"platformName": "Android",
"platformversion": "8.0",
zl@ "app": "/Users/pratik/Downloads/connecPath.apk",
"deviceName": "c4e3f3cd"
}
A
Z W
Z W
Save As...

@ SAUCELABS P8 TestObject (® BrowserStack

Y

Start Session

Figure-7:Saved Capabilities Set.

6) Click on the Start Session button - it will take some time because the Appium
server will install the mentioned app to your connected device/simulator and
then it will analyze the Application XML and underlying structure. After some
time you can see the a window similar to:

94

www.kobiton.com




TextField

Compute Sum

K1

show alert cont...t alert locati...alert
Label 1
Label 2
Location
Test Gesture Crash

A test label

Check calendar authorized

Ol ¢/ @ Q B x

B App Source

v <XCUIElementTypeApplication name="TestApp">
<XCUIElementTypeOther>
v <XCUIElementTypeWindow>
v <XCUIElementTypeOther>

I <XCUIElementTypeTextField name="IntegerA">

© Selected Element

Tap Send Keys Clear
Find By Selector
accessibility id  IntegerA

//XCUIElementTy

<XCUIElementTypeTextField name="IntegerB"> xpath peTextField[@na
me="IntegerA"]
<XCUIElementTypeButton name="ComputeSumButton">
<XCUIElementTypeStaticText name="Answer"> Known as }
cl N Attribute Value
<XCUIElementTypeButton name="show alert"> ass Name
XCUIElementTypeButt “contact alert" \\ type WS IR
< lementTypeButton name="contact alert"> _'yp eTextField
<XCUIElementTypeButton name="location alert">
name IntegerA
<XCUIElementTypeStaticText name="AppElem">
label TextField1

<XCUIElementTypeSlider name="AppElem">

. enabled true
<XCUIElementTypeStaticText name="AppElem">
<XCUIElementTypeButton name="DisabledButton"> visible true
<XCUIElementTypeStaticText> X 119
<XCUIElementTypeSwitch name="locationStatus"> y 17
<XCUIElementTypeButton name="Test Gesture"> width 115
<XCUIElementTypeButton name="Crash"> height 38

<XCUIElementTypeStaticText name="Access'ibility">

Figure-8: Appium Inspector Session(iOS).

e

Login

B App Source

<android.widget.FrameLayout>

v

<android.widget.LinearLayout>
v <android.widget.FrameLayout>
v <android.widget.LinearLayout resource-id="io.cloudgrey.the_app:i
v <android.widget.FramelLayout resource-id="android:id/content'
v <android.widget.RelativeLayout>
<android.view.ViewGroup>
v <android.widget.RelativeLayout>
» <android.widget.LinearLayout>
v <android.widget.FramelLayout>
<android.widget.TextView>
v <android.view.ViewGroup>

<android.widget.EditText content-desc="usern:

» <android.view.ViewGroup>

» <android.view.ViewGroup>

<android.view.View resource-id="android:id/statusBarBackground">

® Selected Element

Tap = Send Keys Clear
Find By Selector
accessibility id  username

xpath

Attribute
index

text

class

package

content-desc
checkable
checked
clickable
enabled
focusable
focused
scrollable

long-clickable

//android.widget.
EditText[@conte
nt-desc="userna
me"]

Value
0
Username

android.widget.E
ditText

io.cloudgrey.the
-app

username
false
false

true

true

true

false
false

true

Figure-8.1: Appium Inspector Session(Android).

95

www.kobiton.com




As you can see you can get the XML structure of all the visible elements on
the screen. Using the best or most appropriate locators strategy(accessibility
id, id, class name, xpath etc.) you can get the valid unique locators.
Additionally, Appium inspector supports many features:

® A great feature of Appium is it will give you the best locator strategies
listed automatically, so in the above image you can see that Appium is
suggesting accessibility id and xpath selectors for the selected
TextField on the screen. Isn’t that convenient?

e But we have only looked at the first initialized screen.

What if you are navigating to another page and want to find elements
on that screen? Would Appium fetch the new screenshot and extract
the XML structure automatically?

Unfortunately the answer is NO, you need to manually click on
Refresh Source & Screenshot button after changing the screen in
order to get that screen’s elements selectors.

()
114 > Refresh Source & Screenshot

B App Source © Selected Element

Select an element in the source to begin.
v <XCUIElementTypeApplication name="TestApp">

<XCUIElementTypeOther>
Compute Sum » <XCUIElementTypeWindow>

?7? » <XCUIElementTypeWindow>

show alert cont...talert locati...alert

Figure-9:Refresh Source & Screenshot.

® Appium Inspector also provides some actions on elements such as
Swiping, Tap on Coordinates etc.

@ [ J
Gz < oo a e x
X: 109
Y: 308 B App Source Q Sele

Select &
v <XCUIElementTypeApplication name="TestApp">

<XCUIElementTypeOther>

Swipe Compute Sum » <XCUIElementTypeWindow>

7? » <XCUIElementTypeWindow>

shiowalert cont...t alert locati...alert » <XCUIElementTypeWindow>

Label 1

Label 2

Figure-10: Swipe By coordinates.

96 www.kobiton.com



E'A| « ¢l Q B X

B App Souree

v <XCUIElementTypeApplication name="TestApp">

<XCUIElementTypeOther>

Figure-11: Tap By Coordinates.

e The Appium Inspector session also provides script recording
functionality which can save a lot of time.

B App Source

© Selected Element

L Tap Send Keys Clear
v <XCUIElementTypeApplication name="TestApp">

<XCUIElementTypeOther>

Find By Selector
Compute Sum v <XCUIElementTypeWindow>
0 v <XCUIElementTypeOther> accessibility id  show alert
Figure-12: Start Recording.
[ JON J
- E « ¢ 1nQ X
1M:32 =T -

Recorder Java - JUnit v © @ © Selected Element

q (new TouchAction(driver)).tap(201, 143).perform() Select an element in the source to begin.
(new TouchAction(driver)).tap (168, 514).perform()

Compute Sum

k(43

B App Source

show alert cont...talert locati...alert

Label 1
v <XCUIElementTypeApplication name="TestApp">
<XCUIElementTypeOther>
qwer t y u i op » <XCUIElementTypeWindow>

» <XCUIElementTypeWindow>
asdfghijk.|

» <XCUIElementTypeWindow>

& zZ X CcvVbnm® » <XCUIElementTypeWindow>

123 ) space m

Figure-13: Recording started.

® Appium Inspector also supports the reverse case - meaning thay by
using the locator you can search for the element on the Ul.

97 www.kobiton.com



Making the move to automation testing with Appium

Search for element

Locator Strategy:

Accessibility ID

Selector:

ComputeSumButton

Figure-14: Search for element.

Search for element

<< Back

Elements (1):

0D000000-0000-0000-A4EC-000000000000

Tap Element Clear

Send Keys

Figure-15: Searched Locator.

7) There is also a feature where you can Attach to existing Session. You need to
provide just the session-id (as shown in the following screenshot). It is useful
for when you already have an Appium session running. This (attaching
session) is possible because the inspector is an Appium client, not Appium
server.

98 www.kobiton.com



Will use currently-running Appium Desktop server at http://localhost:4723

> Advanced Settings

Desired Capabilities Saved Capability Sets (14) Attach to Session...

If you have an already-running session of the above server type, you can attach an inspector to it directly.

Select the Session ID in the dropdown below.

87914958-5f1d-46¢5-b602-1671b3471f2b

& Desired Capabilities Documentation

Automatic Server Custom Server @ SAUCELABS "% TestObject

(© BrowserStack

Attach to Session

Figure-16: Attach to Session...

8) You can inspect elements on another custom appium server by providing the

following information under the “Custom Server” tab:

1) Remote Host Ip address.
2) Remote Host Port.
3) Remote Host Path.

Remote Host Remote Port

Remote Path SSL

> Advanced Settings

Desired Capabilities Saved Capability Sets (14) Attach to Session...

text v
X JSON Representation

{}

& Desired Capabilities Documentation

Automatic Server Custom Server @ SAUCELABS "% TestObject

@ BrowserStack

In

Save As... Start Session

Figure-17: Custom Server Configuration.

9) Appium supports element inspection on remote devices.

There are number of vendors that provide cloud based real-devices for

testing mobile apps, including:

99 www.kobiton.com




1) Kobiton,

2) Saucelabs,
3) TestObject,
4) Headspin,

5) BrowserStack,
6) Bitbar cloud,
7) Kobiton.

<o @& SAUCELABS P TestObject

Kobiton Username
Kobiton Access Key

> Advanced Settings

Desired Capabilities Saved Capability Sets (15)

text

& Desired Capabilities Documentation

(®© BrowserStack vy bitbar, E:-

Attach to Session...

JSON Representation

{}

IS

Figure-21: Kobiton Remote Inspection Configuration.

Comparison between iOS & Android locator strategy

Below is the mapping between Attributes from Appium Inspector(or
UiAutomatorViewer) and Appium Locator Strategy for Android/iOS.

Android
Attribute Locator Strategy(Android)
text Name
resource-id Id
class Class Name

content-desc

Accessibility Id

100

www.kobiton.com




i0S

Attribute Locator Strategy(Android)
name Name, Id

label Id

type Class Name

accessibility id Accessibility Id

In this chapter we learned how to find elements using the Appium Inspector tool. In
the next chapter we are going to see an alternative option UiAutomationViewer
(only for Android) to inspect the Ul elements. Before that, let’s turn to how we can
use Appium to extract elements on the mobile web browser.

Element extraction on a mobile web browser

In this section we are going to talk about how we can get the Ul locators for the
websites which we will be automating in a Mobile Chrome browser.

Make sure you use the mobile version of the site you’re looking to test. For example
http://m.facebook.com is the mobile website, while http://www.facebook.com is
the default website on Desktop. However you can open http://m.facebook.com on
your Desktop and can get the mobile view on your desktop. So ultimately the first
thing is we need to get the Mobile website which we are interested in to be
automated.

After getting the Website URL we need to find the locators of the elements we will
be interacting with. This is a bit different to getting the elements from a Mobile
Native application. On a Mobile Native application we can get the elements using the
Appium Inspector while for Website automation we can get the Ul elements from
the browser itself, we don’t need to rely on any third party tool.

If you're familiar with Selenium then you already know how to get website Ul
elements.

Below are the locator strategies to get the Ul Element locators:
ID

Name

Class Name

CSS Locators

101 www.kobiton.com



e XPath
o LinkText
o Partial Link Text

1) ID
e Id =“m_login_email” for the “Mobile number or email address”
textfield

¥ Facebook-loginorsignup X  +

@ https://m.facebook.com

Responsive ¥ 1080 x 366 100% v Low-end mobile ¥ S :
Mobile number or email address
Password
or
Create Account
Forgotten password?
Enalish (UK) epdl
[® (1]  Elements Console  Sources Network Performance  Memory  Application ~ Security  Audits FHE'S
ULV LU- WU @UE C_CUNEAIE ! UG AT S Ay L USEH 4111 UG LSl Gk T E_E LSS ) Uty
<div id="otp_retrieve_desc_container"></div> Styles Computed  Event Listeners  »
v<div class="_56be _5sob"> Filter thov .cls +
before “
v<div class="_55wo0 _55x2 _56bf"> element.style {
v<div id="email_input_container"s
<input autocorrect="off" autocapitalize="off" class="_56bg _4u9z _5ruq" autocomplete="on'| ame="email .touch ._4u9z { SlyG-1rLyQx.css:7
placeholder="Mobile number or email address" type="text" data-sigil="m_login_email" data-aut $0 padding: » 12px;
</div> }
.touch ._56bg { fnQfvtriLje.css:93
[ ~webkit-appearance: none;
</div> box-sizing: border-box;
»<div class="_2pie" style="text-align:center; /div> width: 100%;
famut tunatthiddan! namainreafill contact naintl id-flarafill contact asintl data autaid=lautaid 110 ¥
html body #viewport #page #root div #u 00 div div #login_form div div. 55wo. 55x2. 56bf divi#femail_input_container input#m_login_email._56bg. 4u9z. 5ruq touch. .touch tr F00fVtrilie. css 49

Figure-22: Id: Locator Strategy.

¥ Facebook-loginorsignup X+

& https://m.facebook.com

Responsive ¥ 1080 x 366 100% v Low-end mobile v & :

‘ﬂl‘ﬂl‘lﬂﬂ.ll

input#m_login_email._56bg._4udz._Srug | 416x42

Mobile number or email address

Found Result Password
or
reate New Account It should be Unique,
So only 1 element should found

. Forgotten password?
#<@id> = Css Selector

Enalish (UK) BRI
x ﬂ Element; Console Sources Network Performance Memol Application Security Audits X
LV LUS PWU_tGUE C_CUITLELIET UG a3 1YL G USET LI U_a 11 aY U1 E_E LEIIE L~ ULy
Styles Computed  Event Listeners ~ »

<div id="otp_retrieve_desc_container"></div>
v<div class="_56be _5sob">
::before
v<div class="_55wo _55x2 _56bf"
iv_id="email input container’-

Filter shov .cls +‘

element.style {

I .touch ._4udz { S1yG-1rLyQx.css:7
padding: » 12px;

.touch ._56bg { £nQfVtrilje.css:93
—webkit-appearance: none;
i " " T q box-sizing: border-box;
html body |#viewport #page #root div #u 0.0 div div #login_form div div. 55wo. 55x2. 56bf divifemail_input_container input#m_loginemail. 56bg. 4u9z. 5ruq width: 100%;
}

#m_login_omal f v ceres g o onvniececiss |

102 www.kobiton.com



Figure-23: Id: Find the Id Locator Strategy on DOM.
e Selector Code:
driver.findElement(By.id("m_login_email™));

NOTE: If you assign ‘# before id name, it becomes the CSS Selector.

2) Name

o Name = “email” for the “Mobile number or email address” textfield

[x ﬂ Elements Console Sources 4 Network Performance

<ULV LU~ PWU_ LauT L_LulitaLict

Memory Application Security Audits

U@ a3 LIYL= USTI_Liiiu_altel
<div id="otp_retrieve_desc_container"></div>
v<div class="_56be _5sob">
::before
v<div class="_55wo0 _55x2 _56bf">
v<div id="email_input_container"s

<input autocorrect="off" autocapltallze off" class="_56bg _4u9z 5ruq autocomplete="on" id=' mlogln email
placeholder="Mobile number or email address" type="text" data-sigil="m_login_email" data-autoid="autoid_9"

_TGLLUTC_C STt~/ ULV~

= 30
</div>
»<div>.</div>
</div>
</div>
»<div class="_2pie" style="text-align:center;">.</div>
ionut tuno-nbidd nrofill tact podntn ddovnrofill intl dog toid touioid a7

Figure-24: Name: Locator Strategy.

o Selector Code:

driver.findElement(By.name(“email”));

3) Class Name

o Class Name =“_56bg _4u9z _5ruq” for the “Mobile number or email
address” textfield. Please note that use this locator when the class

name is defined only once in DOM. If more than one class name found
in DOM, please don’t use it.

[x ﬂ Elements Console Sources Network Performance Memory Application Security Audits

v<div id="email_input_container">
<input autocorrect="off" autocapitalize="off" class="_56bg _4u9z _5ruq" autocomplete="on" id="m_login_email” name="email

placeholder="Mobile number or email address’ type="text" data-sigil="m_login_email data—autoidz”autoid_g”: == $0
</div>

»<div>.</div>
</div>
</div>
v<div class="_2pie" style="text-align:center;">
»<div id="u_@_4" data-sigil="login_password_step_element">..</div>
<div id="otp_button_elem_container'></div>
</div>
<input type="hidden" name="prefill_contact_point" id="prefill_contact_point" data-autoid="autoid_11">
<input type="hidden" name="prefill_source" id="prefill_source" data-autoid="autoid_12">

html body #viewport #page #root div #u_ 0.0 div div #login_form div div. 55wo. 55x2. 56bf div#email_input_container input#m_login_email._56bg._4u9z._5ruq

Figure-25: Class Name: Locator Strategy.

o Selector Code:

driver.findElement(By.className(“_56bg _4u9z _5ruqg”));

103 www.kobiton.com



4) CSS Selector

® (CSS Selector = “._56bg._4u9z._5ruq” for the “Mobile number or
email address” textfield.

< C & https://m.facebook.com

Responsive ¥ 1080 x 366 100% v Low-end mobile ¥ S

input#m_login_email._56bg._4u9z._Sruq | 416x42

Mobile number or email address

Password

or

Create New Account

Forgotten password?

Enalish (UK) LA

& o Elements  Console  Sources Network Memory i Security  Audits o1 ¢ X

v<div id="email_input_container"> Styles Computed  Event Listeners %

<input autocorrect="off" autocapitalize="g

f*|/class="_56bg _4u9z _5rug'| autocomplete="on" id="m_login_email" name="email
pe="Text” data-Sigil="m o

aceholder="Mobile number or email address" T

_login_email" data-autoid="autoid_9"> = $0 Filter thov .cls +,
</div>
v /iy element.style {
</div>
Jdiv> .touch ._4u9z { SlyG-1rlLyQx.css:7
v<div class="_2pie" style="text-align:center;"> N padding: » 12px;
»<div id="u_0_4" data-sigil="login_password_step_element">.</div
<div id="otp_button_elem_container"></div> -touch ._56bg { fnQfvtrilje.css:93
Jdivs ~webkit-appearance: none;
: - ; box-sizing: border-box;
html body #viewport #page #root div #u 00 div div #login_form div div._55wo._55x2._56bf div#temail input_container input#m_login_email._56bg._4udz._Sruq width: 100%;
._56bg._4u9z._5ru 1of1[a v Cancel
louch touch tr fo0fvirilic, cs5249

Figure-26: CSS Selector: Locator Strategy.

e |norder to use CSS Selector using Class Name, You need to
remember that . should be placed at the first letter of class name and
every space in class name must be replaced by . So as we seen on
previous image that class name =“_56bg 4u9z 5ruq” for “Mobile
number or email address” textfield.

But we need to place . before the class name so it would be “._56bg
_4u9z 5ruq” and we also need to replace space with . so the final
CSS Selector would be “._56bg._4u9z._5ruq”

® Inorder to use CSS Selector using Id, You need to place # before the
Id.
SoforId = “m_login_email” the CSS Selector =
“#m_login_email”

e Inorder to use CSS Selector using Name or other Attribute, You need
to define the attribute in square brackets like:
[attribute _name = attribute_value”]

an

For Name =
So for Name = “email” the CSS Selector =
“[name="email”’ ]”

o Selector Code:

104 www.kobiton.com



driver.findElement(By.cssSelector("._56bg. 4u9z. 5ruq"));

NOTE: You can learn more about CSS selectors here:
https://www.softwaretestinghelp.com/css-selector-selenium-locator-selenium-

tutorial-6/

5) XPath

e XPath Selector = “//*[@class="_56bg _4u9z _5ruq’]” OR
“//input[@id="'m_login_email']” OR “//input[@name="'email'])” for
the “Mobile number or email address” textfield.

< C & https://m.facebook.com

Responsive ¥ 1080 x 366 100% ¥ Low-end mobile v S

input#m_login_email._56bg._4u9z._Sruq | 416x42

Mobile number or email address

Password

or

Create New Account

Forgotten password?

Enalish (UK) LA

[® (1] | Elements Console  Sources Network Performance  Memory ~ Application ~ Security  Audits 01| i X

tainer’
f" autc
mbe

v<div id="email_in
<inp

Styles Computed  EventListeners

utocorr
der=

lete="on" id="m_login_email" name="email"
1" data-autoid="autoid_9"> = $0 Filter thov .cls +,

class="_56bg _4u9z _5ruq"
Gata-—s1g1(=

» <diven</dive element.style {

</div>

Jdiv> .touch ._4u9z { SlyG-1rLyQx.css:7
v<div class="_2pie" style="text-align:center;"> N padding: » 12px;
»<div id="u_0_4" data-sigil="login_password_step_element">..</div:
<div id="otp_button_elem_container"></div> .touch ._56bg { fnQfvtrilje.css:93
</div ~webkit-appearance: none;
: - - - box-sizing: border-box;
html body #viewport #page #root div #u 0.0 div div #login_form div div. 55wo. 55x2. 56bf divitemail_input_container input#m_login_email._56bg. 4u9z. Sruq width: 100%;
._56bg. 4udz. 5ru 1of1|a v Cancel
fouch, .touch fr £n0fVirilie. css:d9

Figure-27: XPath Selector: Locator Strategy.

e This locator should be your last option to use as it is also unreliable,
unstable and has performance issues like Native Mobile
Applications.

e XPath is relative Path strategy so In order to create XPath using Class
Name, You need to put the // first thing first, it means it will search
the element anywhere on DOM. After // you can put the Tag name
such as input, a, div etc. And last you need to put attributes in this
format:

[@attribute name = “attribute_value”] so the final
element XPath selector would be: //*[@class="_56bg 4u9z
_5rugq"] OR//input[@class="_56bg _4u9z _5ruq"]

105 www.kobiton.com



o Selector Code:

driver.findElement(By.xpath("//*[@class="_56bg 4u9z
_5rug’1"));

NOTE: You can learn more about XPath selectors here:
https://www.guru99.com/xpath-selenium.html

6) LinkText and Partial LinkText

e LinkText Selector = “Help Centre” for the Help Center link shown in
the image below.

e Partial LinkText Selector = “Help Cent” will work the same way as
above (full) LinkText locator.

e This locator strategy applies to get the Ul Locator for the Link Text.

or
Create New Ac~~+-~+ 1%
ahelp-link.sec | 64.03x 14
Forgotten password? - SIIGERIE
English (UK) ol
[® []  Elements Console Sources Network Performance  Memory  Application  Security  Audits HE
v<div class="other-links"
v<ul class="_Spkb _55wp"> Stylcs X
v<l> thov .cls
v<span class="nfss fcg">
<a tabindex="0" href="/recover/initiate/?c=https%3A%2F%2Fn. facebook.coms2F&ars=facebook login&lwv=100&refid=8" id="forgot-password-link">Forgotten password?</a: si’f““t
span aria-hidden="true"> - </span }
a href="/help/2refid=8" id="help-link" class="sec'sHelp Centres/a> == $0
</span: SlyG-1rLyQ.
._5s0a
/1L .T5rut
</ul> .other-—
</div> links a {
Jdiv> color:
m#759
/div font-
</div> size:
12px
html  body.touch.x1._fzu._50-.iframe.acw.portrait _divéviewport _divipage diviroot. 5soa.acw div. 4g33 div#u_0_0. 4g34 div.aclb. 4-4 div. 5rut div div.otherlinks ul._5pkb. 55wp i span.mfss.fcg a#help-link.sec Line-

Figure-28: LinkText: Locator Strategy.
e Selector Code(Link Text):

driver.findElement(By.linkText("Help Centre")).click();

e Selector Code(Partial Link Text):

driver.findElement(By.partialLinkText("Help Cen")).click();

Mobile browser automation - Sample test case

Let’s put all that theory into some practice to help make the concept more
concrete. We have created a sample automation test case/script which will:

1) Open Chrome/Safari Browser on the relevant device.

106 www.kobiton.com




2) Fill the Username and Password.
3) Click on the Login button.

Android
You can find the Android Code below:

import io.appium.java_client.AppiumDriver;

import io.appium.java_client.android.AndroidDriver;
import
io.appium.java_client.remote.AndroidMobileCapabilityType;
import io.appium.java_client.remote.IOSMobileCapabilityType;
import io.appium.java_client.remote.MobileCapabilityType;
import org.openga.selenium.By;

import org.openga.selenium.remote.BrowserType;

import org.openga.selenium.remote.CapabilityType;

import org.openga.selenium.remote.DesiredCapabilities;
import org.testng.annotations.BeforeTest;

import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class AndroidBrowserTest {

public AndroidDriver driver;

@BeforeTest
public void setUp() throws MalformedURLException {

String appiumServerURL =
"http://127.0.0.1:4723/wd/hub";

DesiredCapabilities dc = new DesiredCapabilities();

dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
"Android");

dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"8.6");

dc.setCapability(MobileCapabilityType.BROWSER_NAME,
BrowserType.CHROME) ;

dc.setCapability(MobileCapabilityType.DEVICE_NAME,
"cd4e3f3cd");

107 www.kobiton.com



dc.setCapability(MobileCapabilityType.AUTOMATION_ NAME,
"UiAutomator2");

driver = new AndroidDriver(new URL(appiumServerURL),
dc);

}

@Test

public void verifyUserCanLoginToFaceBook() throws

InterruptedException {

String username
username

String password
password

; // Enter your valid facebook

; // Enter your valid facebook

driver.get("https://m.facebook.com/");

driver.findElement(By.id("m_login_email")).sendKeys(username)

I

driver.findElement(By.id("m_login_ password")).sendKeys(passwo
rd);

driver.findElement(By.name("login")).click();

iOS
You can find the iOS Code below:

import io.appium.java_client.ios.IOSDriver;

import io.appium.java_client.ios.IOSElement;

import io.appium.java_client.remote.MobileCapabilityType;
import org.openga.selenium.By;

import org.openga.selenium.remote.BrowserType;

import org.openga.selenium.remote.DesiredCapabilities;
import org.testng.Assert;

import org.testng.annotations.BeforeTest;

import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

108 www.kobiton.com



public class iOSBrowserTest {
public IOSDriver<IOSElement> driver;

@BeforeTest
public void setUp() throws MalformedURLException {

String appiumServerURL
"http://127.0.0.1:4723/wd/hub";

DesiredCapabilities dc = new DesiredCapabilities();

dc.setCapability(MobileCapabilityType.PLATFORM_NAME,
n iosll ) ;

dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
"11.4");

dc.setCapability(MobileCapabilityType.BROWSER_NAME,
BrowserType.SAFARI);

dc.setCapability(MobileCapabilityType.DEVICE_NAME,
"iPhone X");

driver = new IOSDriver<IOSElement>(new
URL (appiumServerURL), dc);

}

@Test

public void verifyValidUserCanLoginToFaceBook() throws
InterruptedException {

String username
username

; // Enter your valid facebook

String password
password

; // Enter your valid facebook

driver.get("https://m.facebook.com/");

driver.findElement(By.id("m_login_email")).sendKeys(username)

I

driver.findElement(By.id("m_login_ password")).sendKeys(passwo
rd);

driver.findElement(By.name("login")).click();

109 www.kobiton.com



You can find this project on our Github page.

110 www.kobiton.com



Chapter-6: Walkthrough of
UlAutomator for Android and
Accessibility Inspector for iOS for
Element Extraction.

In the last chapter we discussed the Appium Inspector tool and learned how we can
extract the elements for any application. Appium Inspector is a great tool to extract
elements from Android and iOS both. However, it can take some time to do so.

There is another way: UiAutomatorViewer(Mac & Windows) and Accessibility
Inspector(Mac) are handy tools to extract the elements from Android and iOS
Applications respectively.

The reason why UiAutomatorViewer and Accessibility Inspector is fast because it
does not involve the application installation part, it just fetches the XML structure of
the current screen on the device, no matter which application is open and displayed.

In this chapter we will look into UiAutomatorViewer and Accessibility Inspector tools.

1. UiAutomatorViewer:

UiAutomatorViewer is the Android SDK part and it’s packaged with it, so you
don’t need to install it separately. It’s a tool like Appium Inspector which lets you
inspect the UI(XML Structure) of the application and gives you the attributes of
Ul element.

NOTE: Before using this tool make sure SDK is properly downloaded and the PATH
is set properly.

1) The first step to work with UiAutomatorViewer is you need to connect the
Real(Physical) Android device to your computer (using USB cable).

2) Once you connect the device you can find the device name using: $ adb
devices

abcs-MBP; ~ '$ adb devices
List of devices attached

c4e3f3cd device

Figure-1: Android device is connected.

111 www.kobiton.com



If your device is not connected properly then you might get error: “No
Android devices were detected by adb.”

c@@d
) N NV x

o Error obtaining Device Screenshot

o No Android devices were detected by adb.

Figure-2: No Android device is connected error dialog.

3) After connecting the device, you need to open the UiAutomatorViewer from
SDK directory. You can find UiAutomatorViewer under Android SDK>tools>bin
directory.

Go to the folder:

~/Library/Android/sdk/tooIs/bin/uiautomatorviewerl

Figure-3: Path to UiAutomatorViewer (on Mac).

112 www.kobiton.com



Accounts > | sdk > build-tools 4 @ android @ apkanalyzer
Android 4 emulator > bin 4 B archquery
Application Scripts > extras > [@ emulator @ avdmanager
Application Support > licenses 4 @ emulator-check @ jobb
Assistant > patcher > lib > [ lint
Assistants > platform-tools 4 B mksdcard @ monkeyrunner
Audio > platforms » [ monitor @ screenshot2
Autosave Information 4 | skins > NOTICE.txt B sdkmanager
Caches > sources > package.xml
Calendars 4 system-images > proguard >
CallServices > ~ tools 4 ® source.properties
ColorPickers > supoort >
Figure-4: UiAutomatorViewer (on Mac).
® @ pratik — ui: viewer — java -Xmx1600M -XstartOnFirstThread -Djava.ext....
Togers, Tost ILibrary /Andrors/sok/ oote/min/uiautonatorviever ; exit; cead
abcs-MacBook-Pro:~Test ~ $ /Users/ Test /Library/Android/sdk/tools/bin/uiautomat
orviewer ; exit; W A A x
Node Detail

- I . !I Gpm\llaf
|® Green [ FontCollections
Fonts
o B Gamekit
® Purple Google
Group Containers
I IdentityServices
All Tags... iMovie

Input Methods
Internet Plug-Ins
iTunes

Keyboard
Keyboard Layouts

vvvvvvvvvvvva

4)

Figure-5: UiAutomatorViewer Window (on Mac).

you want to extract the elements.

5)

mobile icon on UiAutomatorViewer window.

Now open the specific application screen on the connected device for which

In order to fetch that screen’s XML structure you need to press the (second)

Ul Automator Viewer

[+

A v X

113

Figure-6: Click on second Mobile icon.

www.kobiton.com




= @@ 4
H A N N x

Progress Information

1 Operation in progress...

Obtaining device screenshot

Figure-7: Obtaining Device screenshot and fetching XML structure.

| NON | Ul Automator Viewer
@@ d

» 0 3 M 57%u 12:19

¢ @ A A v X

v
¥ (0) FrameLayout [0,0][1080,1920]
Login (0) ImageButton [0,63][147,210]
(1) TextView:Login [411,315][669,452

Username (2) EditText:Username {username} [13

(3) EditText:Password {password} [131
> (4) ViewGroup {loginBtn} [466,662][61

Node Detail
index 2
text Username
resource-id
class android.widget.EditText
package io.cloudgrey.the_app

content-desc username
checkable false

checked false
clickable true
enabled true
focusable true
focused false
scrollable false

long-clickable true

Figure-8: Sample application screen.

You can observe here that left side part gives you the screenshot of the
current screen from your connected device and the right side is divided into 2

parts.

114 www.kobiton.com



1) The upper half contains the XML hierarchy of Screen and selected
node.

2) The lower half contains the selected node’s attributes with their
values.

Now you can get the valid selectors such as cont-desc(accessibility id), id,
class name, xpath etc. from the attributes section and start automating the
application right away.

The following table gives the mapping between attributes and Appium
locator strategies:

Attribute Locator Strategy
text Name
resource-id Id

class Class Name
content-desc Accessibility Id

So, as you can see this tool is similar to the Appium Inspector, but the only
difference is this tool doesn't take much time to get Ul element locators.

2. Accessibility Inspector:

Accessibility Inspector is a common Inspector tool included in XCode and
specially designed for Mac OS to get the basic details such as Label, Title, Value
and Type for any Ul element from opened application on Mac OS.

It does not give many details and attributes of Ul elements but it is handy tool to
get the basic information about the element rapidly.

1) On Spotlight Search, search for the Xcode and open it.
=¥ D AN A T TR e U ‘_Z—

Q_ xcode i
TOP HITS
4
i Xcode Server Builder

Xcode — Applications

Figure-9: XCode on Spotlight Search.

115 www.kobiton.com



2) After XCode is open, on the Menu bar Select the XCode > Open Developer
Tool > Accessibility Inspector

File Edit View Find Navigate Editor Product Debug Source Control Window Help

About Xcode

Preferences...
Behaviors

Xcode Server...

Open Developer Tool B Instruments
Services 4 Simulator
Hide Xcode @ Accessibility Inspector

:Liivo:rers \‘? f\li)hl/il:artgiin Loader \/\/e | CO m e to XCO d e

Quit Xcode More Developer Tools Version 9.4.1 (9F2000

Get started with a playground
Explore new ideas quickly and easily.
Create a new Xcode project

Create an app for iPhone, iPad, Mac, Apple Watch or Apple TV.

Clone an existing project
Start working on something from an SCM repository.

Figure-10: Accessibility Inspector on XCode.

3) Below is the dialog of Accessibility Inspector.

116 www.kobiton.com



4)

5)

117

o @ Accessibility Inspector
E ab...Pro ) All processes < O AN @

Quicklook

\_Space toggles inspection pointer

Now open

Figure-11: Accessibility Inspector.

iOS Simulator and open the application for which you want to

extract the locators.

Now click on this icon:

Simulator.

© and select the “Compute Sum” textfield on

www.kobiton.com



Accessibility Inspector

oo

- B ab...Pro ) All processes < O AN @

Quicklook
Compute Sum, button < D>

Basic
Label
Title Compute Sum

Value

Type button

{zgompute Sum

Actions
?7??

Advanced

Element

show alert cont...t alert locati...alert

Hierarchy

Label 1

Label 2

Location
Test Gesture

A test label

Check calendar authorized

\USpace toggles inspection pointer

iPhone X - 11.4

s

Figure-12: Locate the selector on Accessibility Inspector.

As you can see you can get the Basic attributes such as Label, Title, Value and
Type.
While with the Appium Inspector you get many more attributes:

118 www.kobiton.com



[ NON )
ACDIGC/@QX

B App Source ® Selected Element

A Tap = Send Keys Clear
v <XCUIElementTypeApplication name="TestApp">

<XCUIElementTypeOther>

Find By Selector
v <XCUIElementTypeWindow>

v <XCUIElementTypeOther>

ComputeSumBut
Compute Sum accessibility id ¢ P
<XCUIElementTypeTextField name="IntegerA"> on
2??
<XCUIElementTypeTextField name="IntegerB"> //XCUIElementTy
th peButton[@nam
show alert cont...t alert locati...alert <XCUIElementTypeButton name="ComputeSumButton"> Xpa e="ComputeSum
<XCUIElementTypeStaticText name="Answer"> Button"]
Label 1
<XCUIElementTypeButton name="show alert">
Label 2 <XCUIElementTypeButton name="contact alert"> Attribute Value
<XCUIElementTypeButton name="location alert"> type XCUIElementTyp
. eButton
Location <XCUIElementTypeStaticText name="AppElem">
Test Gesture Crash <XCUIElementTypeSlider name="AppElem"> name fomputeSumBul
on
A test label <XCUIElementTypeStaticText name="AppElem">
label Compute Sum
Check calendar authorized <XCUIElementTypeButton name="DisabledButton">
enabled true
<XCUIElementTypeStaticText>
. . visible true
<XCUIElementTypeSwitch name="locationStatus">
<XCUIElementTypeButton name="Test Gesture"> X 110
<XCUIElementTypeButton name="Crash"> > y 216

Figure-13: Locate the selector on Appium Inspector.

Here, Appium Inspector adds more value to the iOS part, whereas the Accessibility
Inspector provides only basics values which in some case may not be sufficient.

There are also many third party software and tools available which helps to identify
the Ul locators.

Ultimately you will figure out which tool best fits into your workflow, but it is a good
idea to have a broad understanding of the choices at your disposal.

119 www.kobiton.com



Chapter-7: Developing a Test
Automation Framework for
Appium using Page Object
Modeling(POM).

Automation Testing with Appium fundamentally boils down to a simple 2-step
process:

1. Identify the Ul Element locator(address)
2. Perform an action onit.

So far we have looked into the basics of Appium and learned how can you build a
simple test case.

But that was just the beginning! It’s time to ramp our skills up a notch.

Now that you know how to locate elements, we could continue exploring the
different actions you can perform on those elements. However, we’re going to leave
that for a later section, and cover an important topic. Technically, the material
covered here is optional, but we’d urge you to follow along.

In the real world, Appium is used to automate an entire mobile application and the
simple idea to put all element locators, and interactions with those locators, into one
file (as we have been doing) won’t help us. It’s just bad design...when we inevitably
go back to increase automation test coverage we would likely end up with an
unmaintainable project - large project files, complex code and duplicate usage of
element locators will become the bane of your daily automation life.

Moreover, even a small change in the application Ul would break the existing
working locators, and if we use the linear structure in our test code it will become so
difficult to fix that locator because we need to replace the invalid locator from each
place in the code.

For Example, most apps or websites have a ‘home’ page, such as a dashboard,
containing a number of menu options. Many automation test cases might click on
these menu options to perform a specific task. Now imagine that the Ul is
changed/revamped and menu buttons are relocated and some of them removed -

120 www.kobiton.com



this will lead to automation tests failure because scripts will not be able to find the
particular element.

So in order to reduce that pain we need to use some kind of structure which can eliminate
those difficulties. And that masterpiece code structure (or framework as it’s more commonly
called!) is known as Page Object Modeling.

Page Object Modeling(POM)

Page Object Model is a popular and widely used Design Pattern in Appium (and
Selenium) Test Automation.

It is popular because it enhances test maintenance and reduces code duplication.
The main logic behind the Page Object Model framework is to keep Locators and
Tests cases separate from each other. This allows you to easily update locators when
the app changes, without affecting your test cases. It’s a cleaner abstraction of
duties.

Page Object is an object-oriented class that keeps all the element locators referring
to a particular page of your Application Under Test and it has interaction methods
for all relevant locators that have been defined. These will be used by the Test Cases
in a particular order according to the test requirements of the feature being tested.

The main advantage to using this is that whenever a Ul change causes a test script
failure, you only need to apply changes on Page Object classes to fix the
automation script.

The basic structure of the Page Object Model framework is depicted below:

121 www.kobiton.com



Page Objects

LoginPO Extend BasePO
Utility Class
WaitUtils
Test Cases PropertyUtils

BaseTestCase

WebDriver

WebDriverManager

Figure-1: Page Object Modeling Structure(POM).

NOTE: The above structure just illustrates one possible Page Object Model structure -
It may vary according to the needs of your app and test cases, and POM works best
for multi page applications.

You don’t need quite as complex a POM structure as shown above, especially when
you’re learning. In this tutorial we will use a “lighter” version of POM illustrated
below:

122 www.kobiton.com




Page Objects

LoginPO Extend BasePO
Utility Class
WaitUtils
Test Cases PropertyUtils
WebDriver

BaseTestCase

Figure-2: Page Object Modeling Structure(Light-weight).

We have removed the WebDriver as separate entity and included it in the
BaseTestCase. The reason for doing so is we want to simplify things, and
WebDriverManager makes more sense when we are working with many different
test execution clients(browsers).

It is especially useful to have the WebDriverManager class when working with
Selenium as there are many browsers out there such as Chrome, Firefox, Safari,
Opera etc and each have some specific Desired Capabilities.

But here we are dealing with iOS and Android Devices only so in lieu of creating a
separate WebDriverManager class we can include the WebDriver creation logic
inside of BaseTestCase.

Follow the below steps to implement this (steps shown below remain same for
Intellij IDEA and Eclipse IDE):

1) Create a new Java Project:

123 www.kobiton.com



= Java
= Java FX
Android
IntelliJ Platform Plugin

71 Maven

G Groovy
) Griffon

K Kotlin

Empty Project

? Cancel

New Project
Project SDK: 1.8 E

Kotlin DSL build script

Additional Libraries and Frameworks:
. Java

G Groovy
IntelliJ Platform Plugin
K Kotlin (Java)
- Kotlin (JavaScript)
IZ Kotlin (Multiplatform Common - Experimental)

%= Kotlin (Multiplatform JS - Experimental)

Previous

New...

Figure-3: Create Java Project.

2) Give avalid Groupld and Artifactld:

| NON | New Project
Groupld pom.framework

Artifactld POM_Automation_Framework

Version 1.0-SNAPSHOT

Figure-4: Groupld and Artifactld.

3) Check the configuration and click on Next button.

124

www.kobiton.com




| NON | New Project

Use auto-import
Group modules: o using explicit module groups using gualified names
Create separate module per source set

O Use default gradle wrapper (recommended)

Use local gradle distribution

Gradle home:
Gradle JVM: 1 Use Project JDK (1.8, path: /Library/Java/JavaVirtual...k1.8.0_181.jdk/Contents/Home) a
? Cancel Previous Next

Figure-5: Check the Configuration.

4) Check the Project Name, Project Location and More Settings.

New Project

Project name: POM_Automation_Framework

Project location: /Volumes/Disk2/AppiumBook/Chapter7-Developing test automation framework using appium

v More Settings

Module name: Chapter7-Developing test automation framework using appium

Content root: olumes/Disk2/AppiumBook/Chapter7-Developing test automation framework using appium

Module file location: ©lumes/Disk2/AppiumBook/Chapter7-Developing test automation framework using appium

Project format: .idea (directory based) a

Previous

? Cancel

Figure-6: Name of New Project and other details.

125 www.kobiton.com




Making the move to automation testing with Appium

5) When you click on the Finish button it will build the whole project and link
the default dependencies.

I. oe POM. i 7} i i hapter7-Ds ing test i using appium]
12 Chapter7: ing test i u.) A | Add Configuration.. b % G M ot ¥ v O O B Q

[~ Project ~ o = & -
» I Chapter7-D ing test i
» Illl External Libraries

Yo Scratches and Consoles

alpeso R},

sy03l01d usnew J

%
z
g
s

c—
Build: Sync, & —
S| © Chapter7: k using appium: syncing... Running for9s

8 @ Starting Gradle Daemon 15327 ms
E = v @ Run build /V Disk hapter7-De test automation framework using appium Running for 3 s
- v @ Load build 15316 ms
* ¥ @ Run init scripts 825 ms
» @ Apply script ijinit.gradle 792 ms

2l x » @ Evaluate settings 477 ms
g » @ Configure build 15564 ms
ﬁ @ Calculate task graph 44 ms
u © Run tasks Running for 915 ms
Q Event Log

1 9 Version Control 28 Terminal | & Build |
[}

.- Gradle: Executing tasks

Figure-7: Gradle Build.

@ Git:master ¢ T &

6) As we are using Gradle as a build tool(No offense to Maven), the first thing
you need to do is to add the gradle dependencies and Import the changes.

| 0 e M POM [7; hapter7-Di ing test i using appium] - POM.
14 Chapter7- test i u... ) @ build.gradle ) A | AddConfiguration.. b & G W6t ¥ v O O M
[ Project ~ @ = @ — M POM_Automation Framework x
v [ Chapter7-D ing test fon fre you can i Gradle wrapper to use distribution with sources. It will provide IDE with Gradle API/DSL documentation. Hide the tip Ok, apply suggestion!
» Im .gradle 1 plugins { v
» [ idea 2 id ‘java'
» D gradle 3 Q
> Basre 5 group *pom. framework'
 build.gradle 6 version '1.0-SNAPSHOT'
# gradiew i C tibilit 1.8
2 gradiew.bat g sourceCompatibility = 1.
M settings.gradle 10 - repositories {
» Il External Libraries E mavenCentral()
o Scratches and Consoles 13
14 b  depehdencies {
15 testCompile group: 'junit', name: 'junit', version: '4.12'
16 testCompile group: 'io.appium’', name: 'java-client', version: '6.1.0'
17 testCompile group: 'org.testng', name: ‘testng', version: '6.14.3'
18 }
19
2
5
T
£
3
2
2
K
E © Gradle projects need to be imported ® X
: Import Changes  Enable Auto-Import
—

Figure-8: build.gradle

126 www.kobiton.com



Making the move to automation testing with Appium

7) You can observe that there is a src directory created by default (By Gradle).

', Chapter7-Developing test automation framework u... > s build.gradle >
" | Project ~ Ho= | x —

v [ Chapter7-Developing test automation fre
» [ .gradle
» [ .idea
» [ gradle
v [src
» % main
v [ test
[ java
%= resources
build.gradle
& gradlew
& gradlew.bat
& settings.gradle
» Il External Libraries
“© Scratches and Consoles

7: Structure

¥ 2: Favorites

[ ]
i= 6: TODO Terminal |4 9: Version Control 4 Build

127 www.kobiton.com



Making the move to automation testing with Appium
Figure-9: Directories created by Gradle.

8) After adding the Appium and TestNG dependencies we will create the Page
Object package inside src > test > java

@ IntelliJIDEA File Edit View Navigate Code Analyze Refactor Build Run Tools VCS
[P
['= Chapter7-Devel ik Kotlin File/Class

. | X cut ®X “ File J

| Project ¥ |
~ | '8 Copy %C 2 Scratch File 38N
v W Chapter7-l  Copy Path r38C Package

» fu.grade  copy Reference X03%8C e kage-info.i
R oy | = package-info.java
» [ gradle . - i HTML File
v Masrc !n . sages & Kotlin Script

» [ main Find in Path... {+88F P .

. - JavaFXApplication
v [ test Replace in Path... ¥R | Singleton
. [ |
:]rj ARG g © Gradle Kotlin DSL Build Script

@ build.gr ~ Refactor » © Gradle Kotlin DSL Settings
@ XSLT Stylesheet

:‘ gradlew Add to Favorites >
d grac?lew Show Image Thumbnails 98T Edit File Templates...
M settings
> llliExternal Li  Reformat Code gl | £ GUIForm
“o Scratches.  Optimize Imports A0 | [ Dialog
Delete... (33 Form Snapshot
i1 Resource Bundle
Build Module 'POM_Automation_Framework_test' “* Plugin DevKit >
Rebuild '<default>' {+88F9
P Run 'All Tests' ~R
# Debug 'All Tests' ~QD

U, Run 'All Tests' with Coverage

[@ Create 'All Tests'...
Reveal in Finder
Open in Terminal

Local History >
Git >
G Synchronize 'java’
(© Edit Scopes...

7: Structure

+ Compare With... 38D

¥ 2: Favorites

Open Module Settings i 2
Load/Unload Modules...

Mark Directory as >
Remove BOM

L

i= 6: TODO
IC1  Create new direct

Figure-10: Adding new package inside src/test/java.

128 www.kobiton.com



| NON | New Package

Enter new package name:

pageobject|

Figure-11: Package Name.
9) Using the same approach add a testcases and utils package.

[ NON ) New Package

Enter new package name:

utils

Figure-12: Package Name: utils.

[ NON | New Package

Enter new package name:

testcases|

Figure-13: Package Name: testcases.

10) The first step is to add the configuration.properties file under resources/
directory. Now what do we mean by this? According to the Page Object
Model we need to put all the configuration related values in one file and in
Java we can use a .properties file for it.

A .properties file contains key/value pairs so if we want to change some
configuration like changing the connected device name, we just need to
change the value of android.device.name key. This means less changes to
our code when things change.

129 www.kobiton.com



Vv [=resources

Chapter7-Developing test automation framework u... ) src ) test ) - resources )

§ Project ~ O = & — € TestCases.java 111 configuration.properties
g Chapter7-Developing test automation fre #Appium Server Properties
&) .gradle 2 appium.server.url=http://127.0.0.1:4723/wd/hub
L] .
[idea #———y -ANDROID CAPABILITIES————————————
gradle 5 android.platform=Android
IR android.platform.version=8.0
android.device.name=c4e3f3cd
screenshots android.app.location=src/test/resources/
src android.app.name=DemoApp.apk
main android.app.packageName=
android.app.activityName=
test android.app.full.reset=false
java android.app.no.reset=false
pageobject
testcases 16 #DefaultWait
utils implicitWait=10

explicitWait=15

L1 configuration.properties

A DemoApp.apk A TEST DATA———————————= SHHEHEHHE
p # Valid Email Credentials:
build.gradle . . - .
~ 9 valid.email=pratikl23@gmail.com
= gradlew 24 valid.password=pratik1234

= gradlew.bat
M settings.gradle
|l External Libraries
» Scratches and Consoles

Figure-14: configuration.properties

To get the value of a key from the .properties file we need to implement
methods and we will use the PropertyUrtils class for that.

11) Now we need to add Utility classes such as PropertyUtils, WaitUtils etc.

130

In test automation Wait has got a vital role. In application automation
when you navigate to another screen or page, there will be a delay
due to resource loading and if we don’t apply the wait then
Automation test scripts can break. That is, the script is attempting to
operate on elements that have not yet rendered or loaded. So to
avoid that we need to tell Appium’s webdriver object that we are
expecting some delay to get the mobile element on the new
screen/page and this is known as a Wait.

There are basically 3 Types of waits in Appium (or Selenium) and we
need to use various forms of them at various times, so we can create
useful methods based on the wait and put them together in the
WaitUtility Class. Then, whenever we need to use the wait we will use
the WaitUtility class.

We will see more about Wait in an upcoming chapter. Here is our code
which you can use right now, and you will learn more about how it
works in a subsequent section. For right now, just know that you have
this WaitUtility class that you will use.

www.kobiton.com




WaitUtils.java

package utils;

import io.appium.java_client.ios.IOSElement;

import org.openga.selenium.By;

import org.openga.selenium.WebDriver;

import org.openga.selenium.WebElement;

import org.openga.selenium.support.ui.ExpectedConditions;
import org.openga.selenium.support.ui.WebDriveriWait;

import java.util.list;
import java.util.concurrent.TimeUnit;

/**

* This will contain all wait related utility methods.
*

* @author prat3ik
*/
public class WaitUtils {

public final int explicitWaitDefault =
PropertyUtils.getIntegerProperty("explicitWait", 10);

/**
* This method is for static wait
ES

* @param millis
*/
public void staticWait(final long millis) {

try {
TimeUnit.MILLISECONDS.sleep(millis);

} catch (final InterruptedException e) {
}

/**
* To wait for button to be clickable

131 www.kobiton.com



*

* @param driver
* @param element
*/
public void waitForElementToBeClickable(final WebElement
element, final WebDriver driver) {
new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.elementToBeClickable(element));

}

/**
* To wait for element (By) to be invisible
*
* @param driver
* @param locator
*/
public void waitForElementToBeInvisible(final By locator,
final WebDriver driver) {
long s = System.currentTimeMillis();
new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.invisibilityOfElementLocated(locato

r));
}

/**
* To wait for given element (By) to be present
*

* @param driver
* @param locator
*/
public void waitForElementToBePresent(final By locator,
final WebDriver driver) {

new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.presenceOfElementLocated(locator));

}

/**

132 www.kobiton.com



* To wait for element (By) to be visible

* @param driver
* @param locator
*/
public void waitForElementToBeVisible(final By locator,
final WebDriver driver) {
new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.visibilityOfElementLocated(locator)
)

}

/**
* To wait for element to be visible
*
* @param driver
* @param element
*/
public void waitForElementToBeVisible(final WebElement
element, final WebDriver driver) {
long s = System.currentTimeMillis();

new WebDriverWait(driver,
this.explicitWaitDefault).until(ExpectedConditions.visibility
Of(element));

}

/**
* To wait for element to be visible for given amount of
time
*
* @param element
* @param driver
* @param time
*/
public void waitForElementToBeVisible(final IOSElement
element, final WebDriver driver, int time) {
long s = System.currentTimeMillis();

new WebDriverWait(driver,
time).until (ExpectedConditions.visibilityOf(element));

}

133 www.kobiton.com



public void waitForElementsToBeInvisible(final
List<WebElement> elements, final WebDriver driver) {

final long s = System.currentTimeMillis();
new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.invisibilityOfAllElements(elements)
)

}

public void waitForElementToBeNotPresent(final By
element, WebDriver driver) {

long s = System.currentTimeMillis();
new WebDriverWait(driver, this.explicitWaitDefault)

.until(ExpectedConditions.not(ExpectedConditions.presenceOfAl
l1ElementsLocatedBy(element)));

}

public void waitUntilNestedElementPresent(WebElement
element, By locator, WebDriver driver) {

new WebDriverWait(driver, explicitWaitDefault)

.until(ExpectedConditions.presenceOfNestedElementLocatedBy (el
ement, locator));

}

e Now add PropertyUtils Class under utils directory, which will be
responsible to get the property values from
resources/configuration.properties file.

PropertyUstils.java
package utils;
import java.io.IOException;
import java.io.InputStream;

import java.util.Properties;

/**

134 www.kobiton.com



* This class is used to get the configuration properties
from the .properties file

*/
public class PropertyUtils {

private static PropertyUtils INSTANCE = null;
private final Properties props = new Properties();

private PropertyUtils() {
this.loadProperties("configuration.properties");
this.props.putAll(System.getProperties());

private static PropertyUtils getInstance() {
if (PropertyUtils.INSTANCE == null) {
PropertyUtils.INSTANCE = new PropertyUtils();

}
return PropertyUtils.INSTANCE;

/**
* This method can read Property value for any given key
*
* @param key
* @return
*/
public static String getProperty(final String key) {

return
PropertyUtils.getInstance().props.getProperty(key);

}

/**
* This method will read any integer property value
*
* @param key
* @param defaultValue
* @return
*/
public static int getIntegerProperty(final String key,
final int defaultValue) {

135 www.kobiton.com



int integerValue = 0;

final String value =
PropertyUtils.getInstance().props.getProperty(key);

if (value == null) {

return defaultValue;

¥

integerValue = Integer.parselInt(value);

return integerValue;

/**
* If key couldn't be found then it will return default
value
*
* @param key
* @param defaultValue
* @return
*/
public static String getProperty(final String key, final
String defaultValue) {

return
PropertyUtils.getInstance().props.getProperty(key,
defaultValue);

}

/**
* This method will load properties file in Properties
object
*
* @param path
*/
public void loadProperties(final String path) {
InputStream inputStream = null;

try {

inputStream =
ClassLoader.getSystemResourceAsStream(path);

System.out.println(inputStream);
if (inputStream != null) {

this.props.load(inputStream);
} else {

136 www.kobiton.com



throw new
UnableToLoadPropertiesException("property file
not found in the classpath");

}
} catch (final Exception e) {
e.printStackTrace();
} finally {
try {
inputStream.close();
} catch (final IOException e) {
e.printStackTrace();

+ path +

return;

/**
* @return Properties
*/
public static Properties getProps() {
return PropertyUtils.getInstance().props;

class UnableTolLoadPropertiesException extends
RuntimeException {

UnableTolLoadPropertiesException(final String s) {

super(s);

public UnableToLoadPropertiesException(final String
string, final Exception ex) {

super(string, ex);

137 www.kobiton.com



12) Now the most important step is to create our BaseTestCase class and include

the logic of WebDriver creation which would be the responsible to manage
the WebDriver object throughout the automation project.

® Create a BaseTestCase class file under the testcases package.

® Add TestNG(Test Framework for Java) default methods such as

@BeforeSuite, @BeforeClass, @BeforeTest, @AfterClass and
@AfterTest methods.

The @BeforeMethod will be executed every time before test case
starts - Let’s look at some simple code regarding its usage.

public class TestCases {

138

@BeforeMethod
public void setUp() {
System.out.println("Before Method executed..!");

public void test() {
System.out.println("Test");

@AfterMethod
public void tearDown() {
System.out.println("After Method executed..!");

It’s pretty straight-forward code - the @Test method is the actual
testing method you will use for your test cases.

@BeforeMethod will be executed before the execution of your @test
method and likewise @AfterMethod will be executed after the test
execution everytime. It does not matter if you are calling these
methods or not.

So when you execute the above test by selecting the test method >
Right Click > Run ‘test()’ it will execute the setUp() method before test
executes - test() method - tearDown() method after the test
executes.

www.kobiton.com



Have a look at this screenshot to see how to execute the test case and
refer to the second screenshot for the output:

package testcases;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeMethod;
import org.testng.an )
port org.1estng-an o cut 38X
/%% B Copy ¥®C
: Year: 2018-19 Copy as Plain Text
* @author Prat3ik o Copy Reference X0 38C
* @project POM_Autol [ paste 8V
*/ .
public class TestCas  Paste from History... 38V
Paste Simple {8V
@BeforeMethod .
public void setU Column Selection Mode 1388
System.out.
Y R Find Usages XF7
Refactor >
@Test
public void Folding >
System.out.p
Analyze >
@AfterMethod Search with Google
public void tear]
System.out.p Go To >
} ¥ Generate... 8N
Recompile 'TestCases.java' {38F9
Run 'test()' ~R
# Debug 'test()’ A0D
G Run 'test()' with Coverage
ilc Save 'test()’
Reveal in Finder
Open in Terminal
Local History >
Git >
TestCases » test() | I+ Compare with Clipboard
|+ 9: Version Control 4 File Encoding
— € Crecte Gt

Figure-15: Execute the TestNG test..

= Chapter7-Developing test automation

.gradle
.idea
gradle
out
src
= main
o test
java
pageobject
testcases
€ BaseTest
¢ TestCases
utils
© AppiumUtils
© AssertUtils
© CommonUtils
© PropertyUtils.java
€ ScreenshotUtility
© StringUtils
© WaitUtils

w-resources

Run: TestCases.test

» @QF & &k = - 12

v Default Suite 22 ms

% @ POM_Automation_Framework
A @ TestCases
@ test

1 package testcases;
2
3 import org.testng.annotations.AfterMethod;
4 import org.testng.annotations.BeforeMethod;
5 import org.testng.annotations.Test;
6
7 /3K
8 * Year: 2018-19
9 *
10 * @author Prat3ik on 23/11/18
11 * @project POM_Automation_Framework
12 */
13 G public class TestCases {
14
15 @BeforeMethod
16 public void setUp() {
17 System.out.println("Before Method executed..!");
18
19
20 @Test
21 b public void test() {
22 System.out.println("Test");
23
24
25 @AfterMethod
26 public void tearDown() {
27 System.out.println("After Method executed..!");
28
29 }
TestCases > tearDown()
Q = @ Tests passed: 1 of 1 test — 22 ms

Before Method executed..!
Test
After Method executed..!

22ms
22ms
oms

Default Suite
Total tests run: 1, Failures: @, Skips: @

Process finished with exit code @

/Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home/bin/java ..

139

Figure-16: Execution of Simple Program.

www.kobiton.com




You can learn more about TestNG Annotations here:
https://www.tutorialspoint.com/testng/testng basic annotations.ht
m

e Theideais to put the code for creation of the WebDriver object inside
the @BeforeMethod, because we want the webdriver object in place
before starting the test case(method).

@BeforeMethod

public void setUpAppium() throws MalformedURLException {
DesiredCapabilities capabilities = new

DesiredCapabilities();
setDesiredCapabilitiesForAndroid(capabilities);
driver = new AppiumDriver(new URL(APPIUM_SERVER_URL),

capabilities);

}

/**

* It will set the DesiredCapabilities for the local
execution

*

* @param desiredCapabilities

*/

private void
setDesiredCapabilitiesForAndroid(DesiredCapabilities
desiredCapabilities) {

String PLATFORM_NAME = PropertyUtils.getProperty("android.plat-
String PLATFORM_VERSION = PropertyUtils.getProperty("android.p
String APP_NAME = PropertyUtils.getProperty("android.app.n
String APP_RELATIVE_PATH = PropertyUtils.getProperty("android.:.
String APP_PATH = getAbsolutePath(APP_RELATIVE_

String DEVICE_NAME = PropertyUtils.getProperty("android.device
String APP_PACKAGE_NAME = PropertyUtils.getProperty("android.a|
String APP_ACTIVITY NAME = PropertyUtils.getProperty("android..
String APP_FULL_RESET = PropertyUtils.getProperty("android.app
String APP_NO_RESET = PropertyUtils.getProperty("android.app.n:«

desiredCapabilities.setCapability(MobileCapabilityType.AUTOMAT:

140 www.kobiton.com



desiredCapabilities.setCapability(MobileCapabilityType.DEVICE_I
desiredCapabilities.setCapability(MobileCapabilityType.PLATFORI
desiredCapabilities.setCapability(MobileCapabilityType.PLATFORI
desiredCapabilities.setCapability(MobileCapabilityType.APP, API
desiredCapabilities.setCapability(AndroidMobileCapabilityType.,
desiredCapabilities.setCapability(AndroidMobileCapabilityType.,
desiredCapabilities.setCapability(MobileCapabilityType.FULL_RE!
desiredCapabilities.setCapability(MobileCapabilityType.NO_RESE’
desiredCapabilities.setCapability(AndroidMobileCapabilityType.,

}

// To get Absolute Path from Relative Path

private static String getAbsolutePath(String
appRelativePath){

File file = new File(appRelativePath);
return file.getAbsolutePath();

}
/**
* This will quite the android driver instance
*/
private void quitDriver() {
try {
this.driver.q
} catch (Exceptio
}

This code illustrates how you can leverage the @BeforeMethod and
@AfterMethod to leverage WebDriver object creation and deletion.

Every Test Case class file will extend this BaseTest Class file, so all the
methods in the BaseTest class file are available to your test cases. You just
have to focus on Test methods creation on TestCases.java file.

13) Add a BasePO Class under the pageobject package.
e BasePO is the class containing the PageFactory method.

141 www.kobiton.com



e What s Page Factory?:

o

It is an inbuilt Page Object Model concept for Selenium
WebDriver and it is used to initialize the web elements
(Utilizing the concept of lazy loading: Initialize elements only
when they are needed to be used) that are defined in Page
Objects.

e Below code is responsible to initialize the web elements:

private void initElements() {

}

PageFactory.initElements(new AppiumFieldDecorator(driver,
Duration.ofSeconds(IMPLICIT WAIT)), this);

e Now every other Page Object class like LoginPO will extend the
BasePO class, so the constructor of BasePO is always called first and
the initElements method will be called on BasePO constructor. In
simple language initElements will always called first whenever any
Page Object class gets called.

Chapter7-Developing test automation fre 1

.gradle
.idea
gradle
src
main
test
java
pageobject
€ BasePO
testcases
€l BaseTest
utils
= resources
& build.gradle
= gradlew
= gradlew.bat
M settings.gradle
|l External Libraries
© Scratches and Consoles

package pageobject;
import ...

/%%
* Year: 2018-19
*
4 * @author Prat3ik on 22/11/18
15 * @project POM_Automation_Framework

*/

public class BasePO {
public final static int IMPLICIT_WAIT = PropertyUtils.getIntegerProperty( key: "implicitWait",
WaitUtils waitUtils;
protected final AppiumDriver driver;

/*x

* A base constructor that sets the page's driver

*

* The page structure is being used within this test in order to separate the

* page actions from the tests.

*

* Please use the AppiumFieldDecorator class within the page factory. This way annotations
* like @AndroidFindBy within the page objects.

*

* @param driver the appium driver created in the beforesuite method.
*/
protected BasePO(AppiumDriver driver){

this.driver = driver;

initElements();

loadProperties();

waitUtils = new WaitUtils();

private void initElements() {
41 PageFactory.initElements(new AppiumFieldDecorator(driver, Duration.ofSeconds(IMPLICIT_WAIT))
}

private void loadProperties() {
//TODO: Add the properties.

defaultValue: 30);

page: this);

Figure-17: BasePO.

Here you can also see some objects and variables defined.
IMPLICIT_ WATIT is getting the values defined in properties file of
java which will be stored under resources/ dir.

142

www.kobiton.com




® Inthe Page Object class you need to define the element’s locators

using the below approach:
For iOS:

@iOSFindBy(xpath = “//XCUIElementTypeTextField”)
IOSElement emailTextField;

For Android:

@AndroidFindBy(xpath =
"//android.widget.TextView[@text="Login Screen']")

AndroidElement loginScreenTextView;

e Inthis example we will work with the sample Android application and
we will use the UiAutomatorViewer inspection tool as it is a speedy

way to get the element’s locator.

Here we get the locator for Login Screen Textview:

| NON | Ul Automator Viewer
= @@ d
+ A
The App

A v X

Choose An Awesome View

Echo Box
Write something and save to local memory

ILoqin Screen |
A fake login screen for testing

Clipboard Demo
Mess around with the clipboard

Webview Demo
Explore the possibilities of hybrid apps

List Demo
Scroll through a list of stuff

Photo Demo
Some photos with no distinguishing IDs

Verify Phone Number

A fake SMS auto-verification screen

¥ (0) FrameLayout [0,0][1080,1920]
(0) TextView:The App [42,101][238,
(1) TextView:Choose An Awesome Vi
> (2) ViewGroup {Echo Box} [0,306][1
¥ (3) ViewGroup {Login Screen} [0,47%
(0) TextView:Login Screen [52,49:
(1) TextView:A fake login screen fc
> (2) ViewGroup [980,516][1054,5
¥V (4) ViewGroup {Clipboard Demo} [O,!
(0) TextView:Clipboard Demo [52,

Node Detail
index 0
text Login Screen
resource-id
class android.widget.TextView
package io.cloudgrey.the_app
content-desc
checkable false
checked false
clickable false
enabled true
focusable false
focused false
scrollable false

Figure-18: UiAutomatorViewer for Android Application.

www.kobiton.com




e And you can create methods in the Page Object class(like in LoginPO)
for the element locators for example if you want to Tap on Login
TextView then you can create method such as
tapOnLoginScreenTextView().

HomeScreenPO.java

package pageobject;

import io.appium.java_client.AppiumDriver;

import io.appium.java_client.android.AndroidElement;
import io.appium.java_client.pagefactory.AndroidFindBy;

public class HomeScreenPO extends BasePO {

public HomeScreenPO(AppiumDriver driver) {
super(driver);

@AndroidFindBy(xpath =
"//android.widget.TextView[@text="Login Screen']")

AndroidElement loginScreenTextView;

/**

* This method will click on Login Screen textview.

*/

public void tapOnLoginScreenTextView(){
loginScreenTextView.click();

144 www.kobiton.com



& Chapter7-L ping test i ku... ) src ) [ test ) [ java ) pageobject ) (€ HomeScreenPO ) 4, Add Configuration...

g Project ~ © = | & — | (© BasePOjava © HomeScreenPO java
E & Chapter7-Developing test automation fre * package pageobject;
= 2
=i .gradle . . . . . . .
[} g 3 import io.appium.java_client.AppiumDriver;
-idea 4 import io.appium.java_client.android.AndroidElement;
gradle 5 import io.appium.java_client.pagefactory.AndroidFindBy;
src 6 import sun.jvm.hotspot.debugger.Page;
. 7
= main 8 o
= test 9 * Year: 2018-19
java w *
R 11 * @author Prat3ik on 23/11/18
pageobject 12 * @project POM_Automation_Framework
© BasePO 13 */
® HomeScreenPO }L: publ;:*class HomeScreenPO extends BaseP0 {
testcases 16 * A base constructor that sets the page's driver
©) BaseTest 17 * <p>
utils 18 * The page structure is being used within this test in order to separate the
19 * page actions from the tests.
W= resources 20 * <p>
A build.gradle 21 * Please use the AppiumFieldDecorator class within the page factory. This way annotations
2 gradlew g i like @AndroidFindBy within the page objects.
= gradlew.bat 24 * @param driver the appium driver created in the beforesuite method.
A settings.gradle 25 */
1l External Libraries 26 protected HomeScreenP0(AppiumDriver driver) {
27 super(driver);
© Scratches and Consoles 28 }
29 -
30 T @AndroidFindBy(id = “"Login Screen")
31 AndroidElement loginScreenTextView;
32
33 public void tapOnLoginScreenTextView(){
° 34 LloginScreenTextView.click();
5 35 }
S 36
& 37 }
i 38

Figure-19: HomeScreenPO.

14) Now that we have created our first Page Object class and added our first
locator into it, we are ready to create a very basic simple test on TestCase

15) Before creating the test case you need to provide the correct path to the
application. You can either:

1) Provide the application locally in the code.

desiredCapabilities.setCapability(MobileCapabilityType.APP
, "path/to/.apk or .ipa(or .app) file");

2) Provide the URL of the application.

desiredCapabilities.setCapability(MobileCapabilityType.APP
, "https://github.com/cloudgrey-io/the-
app/releases/download/v1.7.0/TheApp-v1l.7.0.apk");

TESICasEsS T e W TOpY
€) BaseTest 4 imp( " . . .
. 19 impi Copy file /Users/pratik/Down...irstAutomationTest/src/test/resources/DemoApp.apk
€ TestCases 20
utils 21 /% New name:  [PEurINeelapk
© AppiumUtils gg 3 = z Z =
® AssertUtils b . To directory: “7-Developing test automation framework using appium/src/test/resources
© CommonUtils 25 * Use ~Space for path completion
e 26 *
€ PropertyUtils.java
27 * ? Cancel
© ScreenshotUtility 28 */ m
© Stripalltils._ ..., 2 /1 |
£ Strinalltilc 20 ———————————————————— |

Figure-20: Local .apk file.

145 www.kobiton.com




In our example we will use the local .apk file.

16) Now finally it’s time to create the TestCase java file under the testcases
package and it should extend the BaseTest java file which controls the
webdriver creation before the test starts and deletion at the end of test
execution. So you don't have to take care of that in the TestCase file.

NOTE: Before executing the Test Case make sure Appium server is running on
http://127.0.0.1:4723/wd/hub

TestCases.java

public class TestCases extends BaseTest{

@Test

public void test() {
HomeScreenPO homeScreenPO = new HomeScreenPO(driver);
homeScreenPO. tapOnLoginScreenTextView();

}

@BeforeTest

@Override

public void setUpPage() {}

As you can see here, our test case is not concerned with how to locate the element
and how to perform the action. That is taken care of by our homeScreenPO object.
Our test case can focus on the business logic or what we are actually testing.

If the element location changes, you can update the homeScreenPO object and your
test case remains unaffected.

Execute the above test by selecting the test method > Right Click > Run ‘test()’

146 www.kobiton.com



& Chapter7: ing test i u... ) B src ) Iz test ) B java ) [ testcases ) @ TestCases ) A TestCases.test (1) > & G Git ¥ o m
3 Project ~ © = & — @ TestCasesjava
2 St package testcases;
& & main
- test import org.testng.annotations.AfterMethod;
java import org.testng.annotations.BeforeMethod;
. import org.testng.annotations.BeforeTest;
pageobject import org.testng.annotations.Test;
© BasePO import pageobject.HomeScreenP0;
© HomeScreenPO ,
testcases * Year: 2018-19
€ BaseTest *
& Tost * @author Prat3ik on 23/11/18
AlestCases * @project POM_Automation_Framework
utils 4 *
© AppiumUtils 5 G public class TestCases extends BaseTest{
p -
AssertUtils arest
© CommonUtils 3 b public void test() {
© PropertyUtils.java HomeScreenPO homeScreenPO = new HomeScreenPO(driver);
@ ScreenshotUtility homeScreenP0. tapOnLoginScreenTextView() ;
© StringUtils
© WaitUtils @BeforeTest
24 @override
w-resources : s
) . . 5 of public void setUpPage() {
i configuration.properties
[k DemoApp.apk }
@ build.gradle ¥
Run: TestCases.test (1) &
» @ 1 == = 2 Q% @ Tests passed: 1 of -27s 445ms
® @ Default Suite 27s445ms /Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home/bin/java ...
E @ POM_Automation_Framework java.io.BufferedInputStreame73f792cfNov 23, 2018 11:24:27 PM io.appium.java_client.remote.AppiunCommandExecutors$l
S ;m © TestC - INFO: Detected dialect: W3C
@ estCases °| Nov 23, 2018 11:24:30 PM org.openqa.selenium. remote.Augmenter extractRemoteWebDriver _
= @ test S| WARNING: Augmenter should be applied to the instances of @Augmentable classes or previously augmented instances on |
— Test Case: [testcases.TestCases_test] executed..! o
[ —
5 Default Suite =
3 Total tests run: 1, Failures: @, Skips: 0 ]
& =
*
= 0:Messages | b 4:Run = 6:TODO BN Terminal M 9: Version Control 4, Build Q Event Log

swaloiduaneN F  epeIO R, PING WY 3% 0

Figure-21: Test Case successful execution.

If you can execute the test case successfully then you will get the above screenshot.

You can get the code of above explained framework from our github project.

Phew! That was a ride! Right now you may be thinking that was a lot of work to
create a simple test case - but that simple test case is misleading. You’ve done all the
groundwork - adding more test cases reusing those elements are much quicker.

Fixing the locator when the application changes

Now the question is how can you benefit from all of this work you just did? Think
about your next release when the element locator of the application changes.

Thanks to structuring your code properly, changes to elements just need to be
relfected in the PageObject class. As easy as 1-2-3:

1) Open the particular page object class

147

Let say the locator of Login TextView changed in a new iteration(version) of
the application and Login TextView is part of the Home Screen so you need to
move to HomeScreenPO.java file.

www.kobiton.com




2) Get the new locator

Using Appium Inspector, UiAutomator (Android) or Accessibility Inspector
(i0S) you can get the Locator. So move to the particular screen on the
application where the element is located and fetch the correct locator.

[ NON J Ul Automator Viewer
= @@ d
(T o] % 56%i 11:19
5 A ) 4
The App NV
BiEese A AT VE ¥ (0) FrameLayout [0,0][1080,1920]
Echo Box (0) TextView:The App [42,101][238,

(1) TextView:Choose An Awesome Vi
> (2) ViewGroup {Echo Box} [0,306][1

Write something and save to local memory

|Login Screen | ¥ (3) ViewGroup {Login Screen} [0,47%
A fake login screen for testing (0) TextView:Login Screen [52'49,
) (1) TextView:A fake login screen fc
Clipboard Demo > (2) ViewGroup [980,516][1054,5
Mess around with the clipboard . .
¥V (4) ViewGroup {Clipboard Demo} [O,!(
Webview Demo (0) TextView:Clipboard Demo [52,
Explore the possibilities of hybrid apps
) Node Detail
lS_LSrZ)III)ir:Zigh a list of stuff index 0
text Login Screen
Photo Demo resource-id
Some photos with no distinguishing IDs class | andrOid-Widget‘TeXtVieWI
package io.cloudgrey.the_app
Verify Phone Number content-desc
A fake SMS auto-verification screen checkable false
checked false
clickable false
Let say class got changed to ERstiad e
android.widget.Button focusable false
focused false
scrollable false

Figure-22: Android Application Locator Change.

3) Change the locator

After getting the right locator you just need to replace the old and incorrect
locator. In HomeScreenPO.java file you just need to replace the old locator
with the new locator.

@AndroidFindBy(xpath =
"//android.widget.Button[@text="Login Screen']")

AndroidElement loginScreenTextView;

That’s it! As you can see we just need to change the locator in the Page Object class
and everything works normally again - that is the beauty of using this framework! If
you are not using the framework then you might need to change the locator from
every affected place in code, which is not advisable and can also break something
else.

148 www.kobiton.com



Structuring your test cases like this will make for a far more maintainable test
automation suite. Learning the rigors to do it following this design pattern will
benefit you and your organization for years to come!

149 www.kobiton.com



Chapter-8: Test Synchronization

In the last chapter we explored the Page Object Model in some detail. If you recall,
we touched on the wait method and its significance and we promised to get back to
it. So in this chapter we will understand how wait (or Synchronization) performs a
vital role in Automation.

If two or more components are working together in parallel at the same pace or rate,
synchronization comes into play.

We see it in almost every application whenever the screen changes it takes a few
milliseconds (or seconds) to load, and if you do not manage the proper
synchronization in your code then you might face the dreaded
“ElementNotVisibleException” or “NoSuchElementException” exceptions. This is
because the screen hasn’t finished loading and is not synchronized with your test
code. That is, your test code is over eager and starts trying to perform an action on
an element that hasn’t been loaded yet. To avoid this we need to implement proper
synchronization in our automation script.

We can categorize synchronization in two types:

1) Unconditional,
2) Conditional.

Now let’s discuss each of them.

1) Unconditional synchronization

Unconditional Synchronization is also known as Static Synchronization or Static
Wait.

As the name suggests, it specifies a particular fixed (static) time to wait before
starting the execution. Here Appium(or any program) will wait the specified
amount of time and then it will resume the execution.

The standard example of Unconditional Synchronization is below:

try {
Thread.sleep(

} catch (InterruptedException e) {
e.printStackTr

150 www.kobiton.com



Here the Thread.sleep(1000) function would take 1000 ms to execute.

Key to note is that this wait will be absolute, even if the underlying condition you
were waiting on has been met. For example, you may put in a wait for 3 seconds
waiting for the screen to load. Even if that screen loads in 2 seconds, the system
will still wait for the additional second. The converse is also true - Sometimes the
wait finishes before the underlying operation and execution proceeds. In test
automation, for example, limited network connectivity may slow the mobile
application response time and a screen change may now take 5 seconds while
the script only waits 3 seconds. Once again, you’ll face
“ElementNotVisibleException” or “NoSuchElementException” exceptions.

So unconditional synchronization or static wait is not the preferred way to deal
with dynamic responses.

However it is a viable strategy to use it when you are working with some 3rd
party interfaces and where you can not identify the underlying condition you
need to wait on OR you are sure about the response time.

2) Conditional synchronization

Conditional synchronization depends on some underlying condition. So in
addition to a specified absolute time to wait, the condition is also passed into the
method. Here the script(or program) will resume execution as soon as the
condition is met - or, in the event the condition isn’t met, it will resume after the
specified time.

Appium (or Selenium) provides 3 (mainly 2) types of conditional synchronization.

1) Implicit wait
2) Explicit wait
3) Fluent wait

1) Implicit wait
Implicit wait tells the Appium’s webdriver object to poll the DOM for the

specified amount of time while trying to find the element before throwing an
“ElementNotVisibleException” or “NoSuchElementException” exceptions.

The big advantage of using Implicit wait is it’s lifespan. As we apply Implicit
wait on the Webdriver object, it will be valid for the webdriver object’s
lifespan.

151 www.kobiton.com



Below is the code to apply the Implicit wait of 10 seconds on the Webdriver
object.

// Define AppiumDriver(WebDriver)

AppiumDriver driver = new AppiumDriver(new
URL (APPIUM_SERVER_URL), capabilities);

// Set Implicit wait upon AppiumDriver(WebDriver)

driver.manage().timeouts().implicitlyWait(1e,
TimeUnit.SECONDS);

NOTE: Ideally you should set the implicit wait as soon as you initialize the
WebDriver.

Also you can use other Time Units such as
TimeUnit.NANOSECONDS
TimeUnit.MICROSECONDS
TimeUnit.MILLISECONDS

Please remember that Implicit wait works with only
driver.findElement(...) anddriver.findElements(...)
methods - it won’t work for other methods.

Let’s look at a simple example for better understanding.

You want to click on the Login button on the home screen but the home
screen itself takes some to appear when the Appium script runs.

So ideally you need to specify a condition that Appium should locate the
Login Button element(on the home screen) within 10 seconds after starting
the script and if the element is not present (or the home screen has not
appeared) after 10 seconds, only then throw Exceptions.

You can write the following statement after writing the above (webdriver
initialization and set implicit wait of 10 sec.) code:

// Click on Login Button from Home screen.
driver.findElement(By.id("login")).click();

152

You will notice that we don’t need to specify anything else to the code as we
already added the 10 seconds implicit wait to the AppiumDriver object. Now

www.kobiton.com



it will be polling the DOM for 10 seconds until the Login Button is found and
as soon as the button is found, it will be clicked.

However there are a few limitations to using Implicit wait:

1) Asyou know it’s only useful for driver.findElement(...) and
driver.findElements(...) methods - we can’t check other
conditions. For example if you want to wait until a particular button is
displayed on the screen as well as on the DOM, you can’t check it with
Implicit wait. There is a chance that the particular button is in the
DOM but it’s hidden or it’s not visible on the screen, so in that case
Implicit wait executes successfully but would not give us the accurate
answer about the element’s visibility.

2) There is a chance that the time for the implicit wait isn’t enough. For
example as we mentioned earlier where we’re waiting 5 seconds but
limited network connectivity causes the screen to take 10 seconds to
load. In that case Implicit wait will break.

These limitations are resolved by the Explicit wait.

2) Explicit wait

Explicit waits are the best synchronization methods for dynamic responses in
the application.

Explicit wait informs the AppiumDriver(WebDriver) to wait

1) Until the specified condition is met OR
2) The specified time has elapsed

...before throwing the “ElementNotVisibleException” or
“NoSuchElementException” exceptions.

And if the AppiumDriver is able to meet the condition within the specified
amount of time then the code will get executed.

In explicit wait we need to tell the WebDriver object to wait for a specific
condition using the ExpectedConditions class. So, actually this wait is
specific to a particular single element rather than the whole WebDriver
object (unlike implicit wait).

153 www.kobiton.com



The WebDriverWait class will call the ExpectedCondition every 500
milliseconds by default until the output is True. So if you have given 10
seconds of timeout, ExpectedCondition would be called 20 times at 500
milliseconds intervals to check if the condition has been met.

Now let’s take one simple example to understand the use of Explicit wait.

In almost all mobile applications when you perform a Login it takes some
time to load the dashboard or home screen and its elements. For example
purposes, let’s say there is a menu button on the dashboard screen. You can
use an Explicit wait with the condition of wait till menu button element is
visible:

(ExpectedConditions.visibilityOf (<menu_button_element>))on
Dashboard screen.

WebDriverWait webDriverWait = new WebDriverWait(driver,
30);

webDriverWait.until (ExpectedConditions.visibilityOfElement
Located(By.id("menubutton")));

When we initialize new object of WebDriverWait class, we need to pass 2
parameters:

1) WebDriver object.
2) Number of seconds

After creation of the WebDriver object you need to call the until() method
and need to pass the ExpectedConditions.<condition_name>()
inside it.

There are many conditions are defined in ExpectedConditions class, but we can
list down a few popular ones?:

Condition Name Purpose

elementToBeClickable(By locator) An expectation for checking an
element is visible and enabled such

that you can click it. In this method
Example:

3 Official Selenium API docs on the Github project.

154 www.kobiton.com



3)

155

ExpectedConditions.elementToBeCli
ckable(By.id(“loginButton”));

you need to pass the object of By
class.

elementToBeClickable(WebElement
element)

Example:
ExpectedConditions.elementToBeCli
ckable(driver.findElement(By.id("me
nubutton")));

An expectation for checking an
element is visible and enabled such
that you can click it. In this method
you need to pass the object of
WebElement class.

presenceOfElementLocated(By
locator)

An expectation for checking that an
element is present on the DOM of a
page. This does not necessarily
mean that the element is visible.

visibilityOfElementLocated(By
locator)

An expectation for checking that an
element is either invisible or not
present on the DOM.

elementToBeSelected(WebElement
element)

An expectation for checking if the
given element is selected.

numberOfElementsToBe(By locator,
java.lang.Integer number)

An expectation for checking number
of WebElements with given locator.

titlels(java.lang.String title)

An expectation for checking the title
of a page.

This is not applicable to Appium
Mobile Application.

textToBePresentInElement(WebEle
ment element, java.lang.String text)

An expectation for checking if the
given text is present in the specified
element.

You can find more details about ExpectedConditions class and it’s
methods on Official Selenium docs, but remember not all are applicable to
Mobile Applications, however all the methods are valid for Mobile Web

Browser(Chrome/Safari):

Fluent wait

Fluent wait is part of WebDriverWait, The only difference is it's more

configurable than Explicit wait.

www.kobiton.com




You can configure the:

1) Poll frequency: The is the Time Interval to check whether the
expected condition for the webelement is met or not. So if poll
frequency is 1 second and total wait time is 10 seconds, fluent will
check if the condition is met or not at every 1 second for a maximum
of 10 times.

2) Ignore the Exception: If you want to ignore a specific exception such
as NoSuchElementExceptions while searching for an element.

3) Maximum wait time: The total maximum amount of time to wait for
a condition is met before throwing an exception.

Below is the example of Fluent wait:

FluentWait<AppiumDriver> webDriverWait = new
FluentWait<AppiumDriver>(driver);

webDriverWait.pollingEvery(Duration.ofSeconds(1));
webDriverWait.ignoring(NoSuchElementException.class);
webDriverWait.withTimeout (Duration.ofSeconds(10));

Which types of Wait you should use When?

Wait Type | Purpose

Implicit When you need to apply common wait without any condition.

Explicit When you need to test expected condition for an element.

Fluent When you need to test expected condition for an element after a
specific amount of time like every x seconds/minutes.

Synchronization in our automation framework
(WaitUtils.java)

In Chapter-7, we defined the Wait Utility in order to handle synchronization in
our tests. In this section we will look into the usage of it.

156

www.kobiton.com




We created the WaitUTtils object at 2 places to leverage the synchronization at
Page Object or Test Class level:

1) BasePO.java

= main 17 ©  public class BaseP0 {
- 18 public final static int IMPLICIT_WAIT = PropertyUtils.getIntegerProperty( key: “implicitWait", defaultValue: 30);
utest 19 WaitUtils waitUtils;
java 20 protected final AppiumDriver driver;
N 21

pageobject - .

€ BasePO 23 * A base constructor that sets the page's driver

€ HomeScreenPO 24 *

25 * The page structure is being used within this test in order to separate the
testcases .
26 * page actions from the tests.

€) BaseTest 27 *

€ TestCases 28 * Please use the AppiumFieldDecorator class within the page factory. This way annotations

TS 29 * like @AndroidFindBy within the page objects.

N 30 *

€ AppiumUtils 31 * @param driver the appium driver created in the beforesuite method.

© AssertUtils 32 */

© CommonUtils 33 protected Be_isePO(App%umDrlver driver){

. 34 this.driver = driver;

© PropertyUtils.java 35 initElements();

© ScreenshotUtility 36 - LloadProperties();

© StringUtils i; “} waitUtils = new WaitUtils();

€ WaitUtils 39

Figure-1:WaitUtils object in BasePO.

2) BaseTest.java
T BaseruU ST

35 @Listeners({ScreenshotUtility.class})

c a :

hlomescieenio 36 ©] public abstract class BaseTest {
testcases 37 /%K
¢ BaseTest 38 *x As driver static it will be created only once and used across all of the test classes.
¢’ TestCases 22 X .

X 40 public static AppiumDriver driver;
utils 41  public final static String APPIUM_SERVER_URL = PropertyUtils.getProperty( key: “appium.server.
€ AppiumUtils 42 _ public final static int IMPLICIT WAIT = PropertyUtils.getIntegerProperty( key: "implicitWait",
) AeeliE ji public static WaitUtils waitUtils = new WaitUtils();
< CommonUtils AL

Figure-2: WaitU'tils object in BaseTest.

You can see there are many wait methods(of Implicit and Explicit wait) are
defined in WaitUtils.java file, Now let’s create a simple example to use WaitUTtils
using the WaitUrtils object at the Page Object and Test Class level.

WaitUtils.java
public class WaitUtils {

public void staticWait(final long millis) {

try {
TimeUnit.MILLISECONDS.sleep(millis);

} catch (final InterruptedException e) {

157 www.kobiton.com



1) WaitUtils usage on TestCases.java

Here the script is using the staticWait(long milliSeconds) method, so
after tapping on the Login Screen Text View, the script will pause execution for 2
seconds.

public class TestCases extends BaseTest{

@Test
public void test() {

HomeScreenPO homeScreenPO = new
HomeScreenPO(driver);

homeScreenP0. tapOnLoginScreenTextView();
waitUtils.staticWait(2000);

2) WaitUtils usage on .java

Here the script is using the same staticWait(long milliSeconds) method
of WaitUtils.java class. In HomeScreenPO.java we have defined the
tapOnLoginScreenTextView() method which clicks on the Login TextView -
after tapping on Login Screen Text View, execution would pause for 2 seconds.

public class HomeScreenPO extends BasePO {

/**

* This method will click on Login Screen textview.

*/

public void tapOnLoginScreenTextView(){
loginScreenTextView.click();
waitUtils.staticWait(3000);

So both of them doing the same work but at different places!

158 www.kobiton.com



Many beginner Appium developers sometimes wonder when to wait and for how
long. Using wait in your scripts will become intuitive the more you use them and the
more you run into certain conditions. And don’t worry, you’ll be greeted with
exceptions when you forget to include the proper wait!

159 www.kobiton.com



Chapter-9: Parallel Test
Execution on Simulators and
Emulators.

Up until now we’ve learned all the Appium basics, including how to extract elements
and executing the tests on devices and emulators.

Although automation is great, in today’s fast moving world there is a constant
demand to execute tests faster and on more devices. So the idea of executing these
tests in a linear fashion (ie. one at a time) seems somewhat antiquated.

In this chapter we are going to discuss how you can leverage parallel test execution
on simulators and emulators to test more, faster.

We will be using Java + TestNG, a great combination in the world of Automation
Testing allowing us to run tests on parallel.

Before going too deep into parallelization details we will go through the basics of
TestNG.

TestNG

TestNG is a open source testing framework written in Java, featuring:

Annotations support, which reduces complexity at the class level.

e |tis written in Java and has clean Object Oriented features.

e All tests can be run from one place via the testng.xml file that specifies the
tests to be executed.

e |t has a grouping feature so you can group the test cases and can run them
group wise.

e Supports multi threading and parallel testing at the 1) method(test), 2) class
and 3) test suite level.

e |t also supports Data Providers so code duplication can be reduced.

160 www.kobiton.com



For example, if you want to execute the same test cases having different data
each time, you don’t need to create separate test cases with different data.

In this chapter we will focus on the Parallel testing feature.

Let’s take a refresher on how you can execute test cases from a Test Class file in
Intelli) Idea. You will recall that you just need to select the Test Method Name >

Right click on it > Run.

SampleTest )
— @ FirstAutomationTest €' sampleTest.java
atid 1 import io.appium.java_client.AppiumDriver;
2 import io.appium.java_client.android.AndroidDriver;
3 import org.openqga.selenium.By;
4 import org.openga.selenium.remote.DesiredCapabilities;
5 import org.testng.annotations.BeforeTest;
6 import org.testng.annotatinnc Tact:
7 X Cut #8X
8 import java.net.Malfor
9 import java.net.URL; = Copy *C
10 Copy as Plain Text
1 Q .
; C  public class SampleTes Copy Reference N{r3%8C
13 public AndroidDriv O Paste #’Y
14 Paste from History... 08V
15 @BeforeTest . o
16 public void setUp( Paste Simple Al
17 String appiumS  Column Selection Mode 88
18
19 DesiredCapabil Find Usages XF7
20 dc.setCapabili id");
21 dc.setCapabili Refactor > 10");
22 dc.setCapabili . swnloads/Fi
23 dc.setCapabili ~ Folding td");
24 Analyze >
25 driver = new A
;j ¥ Search with Google
7
28 @Test
29 b public void GoTo >
30 driver.findEle Generate... 3N
-
32 } Recompile 'SampleTest.java’ ©38F9
3 Run 'firstTest()" ~0R
# Debug 'firstTest()' ~{D
G Run 'firstTest()' with Coverage
WG Save 'firstTest()'
Reveal in Finder
Open in Terminal
Local History >
[3¢ Compare with Clipboard
SampleTest » firstTest() File Encoding
= 6: TODO
© Create Gist...

Figure-1: Run the test case.

Now before jumping into parallel testing, let’s revisit the following simple code for
iOS we used in an earlier chapter. This is the code we will be using as an example for

parallel execution:

import
import
import
import
import
import

161

io.appium.java_client.ios.IOSDriver;
io.appium.java_client.ios.IOSElement;
org.openga.selenium.By;
org.openga.selenium.remote.DesiredCapabilities;
org.testng.Assert;
org.testng.annotations.BeforeTest;

www.kobiton.com



import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;

public class IOSTestCases {
public IOSDriver<IOSElement> driver;

@BeforeTest
public void setUp() throws MalformedURLException {

String appiumServerURL
"http://127.0.0.1:4723/wd/hub";

new

DesiredCapabilities dc
DesiredCapabilities();

dc.setCapability("platformName", "iOS");
dc.setCapability("platformVersion”, "11.4");

dc.setCapability("app",
"/Users/pratik/Downloads/FirstAutomationTest/src/test/reso
urces/DemoApp-iPhoneSimulator.app");

dc.setCapability("deviceName", "iPhone X");

driver = new IOSDriver<IOSElement>(new
URL (appiumServerURL), dc);

}

@Test

public void sampleTestCase() throws
InterruptedException {

int a = 5;
int b = 10;

driver.findElement(By.id("IntegerA")).sendKeys(a +
llll);

driver.findElement(By.id("IntegerB")).sendKeys(b +
llll);

driver.findElement(By.id("ComputeSumButton")).click();

String answer =
driver.findElement(By.id("Answer")).getText();

Assert.assertEquals(answer, a + b + "", "Expected

162 www.kobiton.com



and Actual Result didn't match!");
}

After putting the above test script into a Intelli) java project, we can execute the test
cases. But right now we will use the testng.xml method for execution.

Creation of testng.xml

Unfortunately, by default testng.xml is not available to the project so we need to
create it. But you can do it in 2 ways:

1) Manually create testng.xml

In this approach, You have to create the testng.xml file manually in project.
You can

create/configure the testng.xml file by many ways such as:
a) Specifying the Package name, to execute tests from whole package.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">

<test verbose="2" preserve-order="true"

name="/Volumes/Disk2/AppiumBook/Chapter9-Test
Execution on Parallel simulators and emulators">

<packages>
<package name="testcases" />
</packages>
</test>
</suite>

b) Specifying the Test Class name, to execute tests for particular Test
Class.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">

<test verbose="2" preserve-order="true"

name="/Volumes/Disk2/AppiumBook/Chapter9-Test
Execution on Parallel simulators and emulators">

<classes>
<class name="testcases.IOSTestCases">

163 www.kobiton.com



</class>
</classes>
</test>
</suite>

c) Specifying the Test Method name, to execute a particular test case.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">

<test verbose="2" preserve-order="true"

name="/Volumes/Disk2/AppiumBook/Chapter9-Test
Execution on Parallel simulators and emulators">

<classes>
<class name="testcases.IOSTestCases">
<methods>
<include name="sampleTestCase"/>
</methods>
</class>
</classes>
</test>
</suite>

d) Specifying the specific groups to be included or excluded. Here you
need to set the group to Test case first like:

@Test(groups = {"sample"})
public void sampleTestCase() {

And after that you can create a testng.xml file to run the test cases for
a sample group.
<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">
<test verbose="2" preserve-order="true"

name="/Volumes/Disk2/AppiumBook/Chapter9-Test
Execution on Parallel simulators and emulators">

164 www.kobiton.com



<groups>
<run>
<include name="sample"/>
</run>
</groups>

<classes>
<class name="testcases.IOSTestCases"/>
</classes>
</test>
</suite>

That may seem a little confusing right now since you don’t yet know the
details of

what all of that does. Hang in there, it’ll start making sense in a bit.

2) Manually create testng.xml

This is the recommended approach in Intelli Idea, as you can create
testng.xml using an Intelli) Idea plugin. For other IDEs, consult their plug-in
marketplace or ecosystem.

Creating it via IntelliJ involves the following steps:
e Move to Intelli) Idea project and open Preferences.

& RNLCINDITW File Edit View Navigate Co

® ©|  About IntelliJ IDEA amework [/Volumes/DisK
= Chap% Check for Updates... 1n framework u... ) [ src
3 Preferences... I = & — @ TestC

g | Services » Itomation fram ;

Il I

™ | HideIntelliJ IDEA  3H .

y Hide Others X $H 5

| Show All 6

7

| QuitintelliJ IDEA  $8Q 8

‘ mmmorTe 9

: 10

% main o

2 test -

java 13

pageobject o

Figure-2: Open Preferences.

165 www.kobiton.com



e Now move to plugin section and click on Browse repositories... which
will takes you to the Plugins dialog.

[ JOX ) Preferences
Q- Plugins
Appearance & Behavior Q- Show: Al plugins ~
Keymap Sort by:name ¥ Android Support
" pports development of Android applications with IntelliJ IDEA
= AntSupport and Android Studio.
Version Control
Build, Execution, Deployment = Bytecode Viewer
Languages & Frameworks = Copyright
Tools = Coverage
a CVSIntegration
= Eclipse Integration
= EditorConfig
w GitIntegration
' GitHub
a Gradle
w Groovy
= 118n for Java
w IntelliLang
= Java Bytecode Decompiler
= Java Stream Debugger
w JavaFX
& Junit
Kotlin
= Maven Integration
Install JetBrains plugin... Browse repositories... Install plugin from disk...
? Cancel Apply ﬁ

Figure-3: IntelliJ Plugins.

e Search for “Create testng” type string and you will find the plugin
named “Create TestNG XML”

166 www.kobiton.com



@ © = Screen Shot 2018-12-01 at 9.36.19 PM
v || Q| & th =) ®
( NON ) Browse Repositories

Q. create testn 'S Category: All +

Sort by: name v APPS, NOTIFICATION AND INTERACTION APPLICATIONS
Create TestNCPLY B Create TestNG XML

7,393
APPS, NOTIFICATION AND INTERACTION APPLICATIONS
one year ago [¥] Install

Yk kK% 7393 downloads
Updated 13/03/17 v1.0

G XML, by Right click on the project file
SIZERgRIxmI, BIMENX 4 EERIERE, XHRKEREIEHN
REF T Ala@mail: heygeo@163.com 3¥1%:  https://github.
com/Felixlovechina/[EaggXmlAutofE/blob/master/README.md
Change Notes

2017-03-12:publish

Vendor

autonavi
http://amap.com
heygeo@163.com

Size

606.6 K

Figure-4: Create TestNG XML plugin.

e After installing the plugin, you need to restart IntelliJ IDEA.

( ] ( ] Browse Repositories

Q- create testn S Category: All +

Sort by: name v | APPS, NOTIFICATION AND INTERACTION APPLICATIONS
2 393 Create TestNG XML
one year ago (& Restart IntelliJ IDEA

Create TestNcR {8

APPS, NOTIFICATION AND INTERACTION APPLICATIONS

Y% % kk 7393 downloads
Updated 13/03/17 v1.0

G XML, by Right click on the project file
BIEEEWgfIxmI, BEMBNX G EARIERE, XHRWERETMEN
REF F AlEf@mail: heygeo@163.com i¥1&: https://github.
com/Felixlovechina/EaggXmlAuto[@r/blob/master/README.md
Change Notes

2017-03-12:publish

Vendor

autonavi
http://amap.com
heygeo@163.com

Size

606.6 K

Figure-5: Restart IntelliJ IDEA after installing plugin.

o Now after restarting the IntelliJ IDEA, you are able to generate a
TestNG xml file.

167 www.kobiton.com



® ( J POM_Automation_Framework [/Vo| &> cut A
kloping test automation framework u... ) src ) & Copy %C
Copy Path 4 38C
F Project ~ O T & Copy Relative Path X{r38C
g . Chapter7-Developing test automation fran [] paste 8.V
1 .gradle
[ .idea Find Usages XF7
gradle Find in Path... 1 38F
out Replace in Path... 038R
screenshots Analyze >
src
= main Refactor >
tes.t Add to Favorites >
Java Show Image Thumbnails 08T
pageobject
€ BasePO Reformat Code XL
© HomeScreenPO Optimize Imports X0
testcases Remove Module (34
€l BaseTest

¢’ TestCases
utils
AppiumUtils
AssertUtils
CommonUtils
PropertyUtils.java
ScreenshotUtility
StringUtils
€ WaitUtils
W= resources
L1 configuration.properties
[.L DemoApp.apk
¥ build.gradle
= gradlew
= gradlew.bat
M settings.gradle
il External Libraries
© Scratches and Consoles

D606 6 @ @

TStructure

 Z: Favories

i= 6: TODO Terminal

|+ 9: Version Control

(%)

-

()
(%)

Build Module 'POM_Automation_Framework'

Rebuild ...utomation_Framework' {+38F9
Reveal in Finder

Open in Terminal

Local History >
Git >

Synchronize 'Chapter7-D...sing appium'
Edit Scopes...

Compare With... $D
Open Module Settings ¥
Load/Unload Modules...

Move Module to Group >
Mark Directory as >

Remove BOM

Creat TestNG XML

Open on GitHub
Create Gist...

Figure-5: Create TestNG XML.

e In afraction of a second testng.xml will be created and you will get
the below confirmation modal dialog.

[ku...)

L | (& TestCases.java

S
|

me 1 package test
2 >

3 import org.t
4 import org.t
5 import pagec
6

Hi, process result :

TestNG XML at :
[Volumes/Disk2/AppiumBook/Chapter7-Developing test automation

framework using a

ium/testng.xml

Check Please .

java/testcases/testng.xn

}onfiguration.properties

7 /%%

8 *x Year: 201

9 *

10 * @author }

11 ¥ ———————
12 x/

Figure-6: TestNG created successfully.

o By default testng.xml will be created under the project root directory,
so it won’t be identified by the java compiler at run/compile time. So
you need to move it to test/resources.

168

www.kobiton.com



Project v © = & — @ 0STestCasesjava & testng.xm!

Chapter9-Test Execution on Parallel simulators and emulators [F <?xml version="1.0" encoding="UTF-8"?>
gradie 2 <IDOCTYPE suite SYSTEM “http://testng.org/testng-1.0.dtd">
.‘d 3 <suite name="All Test Suite">
.idea

<test verbose="2" preserve-order="true"

gradle 5 name="/Volumes/Disk2/AppiumBook/Chapter9-Test Execution on Parallel simulators and emulators">
out <classes>
<class name="testcases.I0STestCases">
screenshots 8 <methods>
src 9 <include name="sampleTestCase"/>
main </methods>
</class>
test </classes>
java </test>
testcases B </suite>

€ |0STestCases
W= resources
DemoApp-iPhoneSimulator.app
11 configuration.properties
e testng.xml
¥ build.gradle
= gradlew
& gradlew.bat
M settings.gradle
Il External Libraries
o Scratches and Consoles

Figure-7: testng.xml under test/resources directory.

So as you can see in above screenshot, there are some pre-defined
XML tags present. Here by default class tag has
name="testcases.lOSTestCases” attribute, which means TestNG will
execute all test cases under this test class only. And as we have only
one test case(sampleTestCase) is defined under
testcases.lOSTestCases it will run/execute only one test case.

You can also change the testng.xml and make it run at the package,
class, method and group level.

How to run the testng.xml?

Well, the answer is just a 2 step process:
1) Right click on testng.xml
2) Select Run

And that’s it, your tests under the I0STestCases will start the execution sequentially.

169 www.kobiton.com



o o POM_Automation_Framework [/ 3¢ cut ;X W
apter9-Test Execution on Parallel simulators ... ) ' st [ Copy #C (G
i Project ~ e = % Copy Path ) 71}38C
E , Chapter9-Test Execution on Parallel simulat¢ Cepy ek e SEds
= .gradle paste v
= idea £ Jump to Source ®Y
gradle Find Usages XF7
out Analyze >
screenshots
src Refactor >
= main
- test Add to Favorites >
java Reformat Code 8L
“?ftcases Optimize Imports ~XO0
DemoApp-iPhoneSimulator.app e L
w1configuration.properties Build Module
% testng.xml Rebuild 0 88F9
¥ build.gradle
= gradlew # Debug '/Volumes/Disk2/AppiumBook/Chapter9-Test... emulators/src/test/resources/testng.xml' ~QD
= gradlew.bat G Run '/Volumes/Disk2/AppiumBook/Chapter9-Test... emulators/src/test/resources/testng.xml' with Coverage
M settings.gradle
|l External Libraries N[ Create '/Volumes/Disk2/AppiumBook/Chapter9-Test Execution on Parallel simulators and emulators/src/test/resources/testng.xml'...
© Scratches and Consoles Reveal in Finder

ure

B2 Open in Terminal

Local History >
Git >

Figure-8: Run the testng.xml.

Parallel execution of automation tests is a really important concept - by executing
the tests in parallel we can save a lot of time.

1) Parallel execution of tests on iOS simulators

Our goal is to execute a single test case (sampleTestCase) written in
I0STestCase.java on 3 iOS Simulators(iPhone 7, iPhone 8 and iPhone X) in
parallel.

In order to achieve that we need to understand 2 important concepts:
1) We need to manage the Appium Server from Code:

Up until now we were using the Appium Desktop Application to start the
Appium server. Normally, one Appium server is bound to one Appium Session
(or you can say to one device/simulator), but now as we need to run the test
case on 3i0S simulators at the same time, we need 3 Appium servers
running on three different ports. Now you can’t rely on the Appium Desktop
Application as it will be able to run only one Appium Server.

So the best option left to us is to create and run 3 Appium servers at runtime,
and using Java you can easily create the Runtime Appium Server by
mentioning the particular port. In our case we will need 3 different ports to
start 3 different Appium Servers(or Sessions).

Below is the code which will start and stop the Appium server for port 4725.

// Create AppiumDriverLocalService object with specifying the
port.

AppiumDriverLocalService service = new

170 www.kobiton.com



AppiumServiceBuilder().usingPort(4725).build();
// To start Appium server.
service.start();

// To End Appium server.
service.start();

2) We need to use parameters in Test Class and testng.xml

We need to start 3 Appium Servers on 3 different ports, and each device
should be assigned to a single Appium Server with a unique WDA port.

What is a WDA Port?

It’s nothing but used to forward traffic from the Mac host to the iOS
Simulator to real ios devices over USB

This table may make it more clear:

No. Appium Server Port Device Name (Simulator) WDA Local Port
1 4725 iPhone 7 8100
2 4726 iPhone 8 8200
3 4727 iPhone X 8300

Now we need to pass these values from testng.xml to our Test Class before
all initialization of the WebDriver takes place. And we will use the TestNG
@Parameters annotation for that.

Please consider the below example to understand how @Parameter at the
Test Class level and <parameter> at testng.xml level works.

I0STestCases.java

@Parameters({"wda", "deviceName", "port"})
@BeforeTest
public void setUp(long wda, String deviceName, String port){

AppiumDriverLocalService service = new
AppiumServiceBuilder().usingPort(Integer.valueOf(port)).build

()

171 www.kobiton.com



service.start();

DesiredCapabilities dc = new DesiredCapabilities();

dc.setCapability(IOSMobileCapabilityType.WDA_LOCAL_PORT,
wda);

dc.setCapability(MobileCapabilityType.DEVICE_NAME,
deviceName);

testng.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
<suite name="All Test Suite">
<test name="testl">
<parameter name="wda" value="8100"/>
<parameter name="deviceName" value="iPhone 7"/>
<parameter name="port" value="4725"/>
<classes>
<class name="testcases.IOSTestCases"/>
</classes>
</test>
</suite>

In the above example we are passing 3 values from testng.xml to the
I0OSTestClass.java:

1) wda: Which will be passed to Desired capabilities
I0SMobileCapabilityType.WDA LOCAL_PORT

2) deviceName: Which also would be passed to Desired capabilities of
MobileCapabilityType.DEVICE_NAME

3) port: Used to create the Appium server.

Now let’s come to the parallelization part. If you want to run test cases in parallel
then you need to use attributes along with the <suite> tag.

172 www.kobiton.com



1) parallel: It has a number of possible values such as tests, classes, method
and instances. If you want to run parallelization at <test> then you can use
parallel="tests"

2) thread-count: No of threads to execute in parallel. If you want to execute
5 test cases in parallel then thread-count="5"

<suite name="All Test Suite" parallel="tests" thread-
count="5">

To reach our Goal we need to execute test cases from I0STestCases.java on
3i0S simulators in parallel, so below is the testng.xml file we can use:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="All Test Suite" parallel="tests" thread-
count="3">

<test name="testl">
<parameter name="wda" value="8100"/>
<parameter name="deviceName" value="iPhone 7"/>
<parameter name="port" value="4725"/>
<classes>
<class name="testcases.IOSTestCases"/>
</classes>
</test>

<test name="test2">
<parameter name="wda" value="8200"/>
<parameter name="deviceName" value="iPhone 8"/>
<parameter name="port" value="4726"/>
<classes>
<class name="testcases.IOSTestCases"/>
</classes>
</test>
<test name="test3">
<parameter name="wda" value="8300"/>
<parameter name="deviceName" value="iPhone X"/>
<parameter name="port" value="4727"/>
<classes>
<class name="testcases.IOSTestCases"/>
</classes>

173 www.kobiton.com



</test>

</suite>

After adding this to testng.xml you just need to Right click on it and select Run
option, and you will see the 3 i0S Simulators will open and each of them will
execute test cases in parallel. Great!

We have discussed only one possible way to achieve parallelization. There are
many other ways out there and you can also create your own.

2) Parallel execution of tests on real iOS devices

In the previous section we looked at test execution on iOS Simulators, but what if
you want to execute tests on Real Devices? In the next chapter we will look at
using a cloud testing service like Kobiton, but for now, let’s look at how you may
need to run parallel tests using the real-devices on-hand.

The answer is pretty simple - we just need to pass UDID as a 4th parameter.

Let’s understand this by way of an example. Let’s say we have 2 real iOS Devices
connected to our Mac host and we want to run the test cases on that in parallel.
Please look at the table below for Device capability and Port information.

No. Appium Real uUDID WDA
Server Port | Device Local
Name Port
1 4725 John’s 2b6f0cc904d137be2e1730235f5664094b831186 | 8100
iPhone
2 4726 iPhone d137be2e12b6f0cc90473031186235f5664094b8 | 8200
3 4727 iPhone X 137b30235f5664094b831186e22b6f0cc904del7 | 8300

I0STestCases.java and testng.xml will look like below.

I0STestCases.java

@Parameters({"wda", "udid", "deviceName", "port"})
@BeforeTest

public void setUp(long wda, String udid, String deviceName,
String port){

174 www.kobiton.com




AppiumDriverLocalService service = new
AppiumServiceBuilder().usingPort(Integer.valueOf(port)).build
0

service.start();

DesiredCapabilities dc = new DesiredCapabilities();

dc.setCapability(IOSMobileCapabilityType.WDA_LOCAL_PORT,
wda);

dc.setCapability(MobileCapabilityType.UDID, udid);

dc.setCapability(MobileCapabilityType.DEVICE_NAME,
deviceName);

testng.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="All Test Suite" parallel="tests" thread-
count="2">

<test name="testl">
<parameter name="wda" value="8100"/>

<parameter name="udid"
value="2b6f0cc904d137be2e1730235f5664094b831186" />

<parameter name="deviceName" value="John’s

iPhone" />
<parameter name="port" value="4725"/>
<classes>
<class name="testcases.IOSTestCases"/>
</classes>
</test>

<test name="test2">
<parameter name="wda" value="8200"/>

<parameter name="udid"
value="d137be2el2b6f0cc90473031186235f5664094b8" />

<parameter name="deviceName" value="iPhone"/>
<parameter name="port" value="4726"/>
<classes>

175 www.kobiton.com



<class name="testcases.IOSTestCases"/>
</classes>
</test>

<test name="test3">
<parameter name="wda" value="8300"/>

<parameter name="udid"
value="137b30235f5664094b831186e22b6f0cc904del7" />

<parameter name="deviceName" value="iPhone X"/>
<parameter name="port" value="4727"/>
<classes>
<class name="testcases.IOSTestCases"/>
</classes>
</test>

</suite>

3) Parallel execution of tests on Android emulators

Parallel execution of tests on Android emulators is largely the same mechanism
we just explored as with iOS device. The main advantage with parallel execution
on Android is that, unlike with iOS, you don’t need to provide a wda port.

AndroidTestCases.java

@Parameters({"platformversion"”, "deviceName", "port"})
@BeforeTest

public void setUp(String platformVersion, String deviceName,
String port) throws MalformedURLException {

AppiumDriverlLocalService service = new
AppiumServiceBuilder().usingPort(Integer.valueOf(port)).build
0

service.start();

DesiredCapabilities dc = new DesiredCapabilities();

dc.setCapability(MobileCapabilityType.PLATFORM_VERSION,
platformVersion);

dc.setCapability(MobileCapabilityType.DEVICE_NAME,
deviceName);

176 www.kobiton.com



testng.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="Android Test Suite" parallel="tests" thread-
count="2">

<test name="testl">
<parameter name="platformVersion" value="8.0"/>
<parameter name="deviceName" value="emulator-

5554" />
<parameter name="port" value="4729"/>
<classes>
<class name="testcases.AndroidTestCases"/>
</classes>
</test>

<test name="test2">
<parameter name="platformVersion" value="9.0"/>
<parameter name="deviceName" value="emulator-

5556" />
<parameter name="port" value="4730"/>
<classes>
<class name="testcases.AndroidTestCases"/>
</classes>
</test>
</suite>

Everything else remains the same.

4) Parallel execution of tests on real Android devices

You just need to change the device name in testng.xml. Using $ adb devices
you can get the connected real device names.

testng.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

177 www.kobiton.com



<suite name="Android Test Suite" parallel="tests" thread-
count="2">

<test name="testl">
<parameter name="platformVersion" value="7.0"/>

<parameter name="deviceName"
value="B6AUTSZDYPS0zZD7S"/>

<parameter name="port" value="4739"/>
<classes>
<class name="testcases.AndroidTestCases"/>
</classes>
</test>
<test name="test2">

<parameter
<parameter
<parameter
<classes>
<class
</classes>

name="platformVersion" value="8.0"/>
name="deviceName" value="c4e3f3cd"/>
name="port" value="4740"/>

name="testcases.AndroidTestCases" />

</test>
</suite>

When you execute the above testng.xml you can get output result similar to the

below image.

p-Test Execution on Parallel simulators ... ) [ src ) [ test ) = resources ) . testng android.xml ) 4 /Volumes/Di: hapter9-Test... _androidxml ~ b % G Git: ¥ o m Q
5 Project ~ © <= & — (@ 0sTestCasesjava € AndroidTestCases java & testng_android.xm! e testng_ios.xml A POM_Automation_Framework 7| configuration.properties =
2 screensnots 35 @BeforeTest @z
& sre 36 public void setUp(String platformVersion, String deviceName, String port) throws MalformedURLException { z
L = main 37 service = new AppiumServiceBuilder().usingPort(Integer.value0f(port)).build(); =
test 38 service.start();
]
- 39 -~
java 40 if (service = null || !service.isRunning()) { °
testcases 41 throw new AppiumServerHasNotBeenStartedLocallyException(“Appium service node not started"); g
& AndroidTestCases b ¥ 9®
€' l0STestCases 44 DesiredCapabilities dc = new DesiredCapabilities(); m
= resources 45 dc.setCapability(MobileCapabilityType.PLATFORM_NAME, value: “Android"); z
DemoApp-iPhoneSimulator. 46 dc. setCapability(MobileCapabilityType. PLATFORM_VERSION, platformVersion); ) H
emf) PP .‘ one "m.'a or-app 47 dc.setCapability(MobileCapabilityType.APP, value: “/Users/pratik/Downloads/FirstAutomationTest/src/test/resources/DemoApp.apk”); 2
i1 configuration.properties 48 dc.setCapability(MobileCapabilityType.DEVICE_NAME, deviceName); e
[k DemoApp.apk 49 dc. setCapability(MobileCapabilityType. AUTOMATION_NAME, value: "UiAutomator2"); 2
test id.xml 58 ’
e D 51 driver = new AndroidDrivergAndroidElements (service.getUrl(), dc); |
& testng_ios.xml 52 try {
4 build.gradle 53 Thread.sleep( millis: 5000); |
2 gradle 54 } catch (InterruptedException e) {
gradlew 55 e.printStackTrace() ;
& gradlew.bat 56
@ settings.gradle 57 }
v Il External Librari 22
Wl Extemal Libraries ) . |59 @Test(groups = {"sample"})
P < 1.8 > /Library/Java/JavaVirtualMachines/id | gp p public void sampleTestCase() {
iii Gradle: cglib:cglib:3.2.6 61 driver. findElementByAccessibilityId((“Login Screen")).click();
iii Gradle: com.beust:jcommander:1.72 Rz
AndroidTestCases > setUp()
Run: AndroidTestCases.sampleTestCase [Volumes/Disk2/AppiumBook/Chapter9-Tes... &
» | @F & = = 12 @ » @ Tests failed: 1, passed: 1 of 2 tests - 1m 9's 286 ms
29 Vv @ Android Test Suite 1m9s286ms [HTTP] ——> POST /wd/hub/session/3f36ff12-7bbc-46a4-a3af-51e14b7d8d7d/element 4
2 @ test2 [HTTP] {"using":"accessibility id","value":"Login Screen"}
S I [debug] [W3C] Calling AppiumDriver.findElement() with args: ["accessibility id","Login Screen","3f36ff12-7bbc-46a4-a3af-51e14b7d8d7d"]
E @ testl v
(] [debug] [BaseDriver] Valid locator strategies for this request: xpath, id, class name, accessibility id, -android uiautomator _
E [debug] [BaseDriver] Waiting up to 0 ms for condition E
- © test1 160ms|  [debug] [JSONWP Proxy] Matched '/element' to command name 'findElement' o
@ test2 258ms  [debug] [JSONWP Proxy] Proxying [POST /element] to [POST http://localhost:8200/wd/hub/session/2619664d-b02c-43be-a2bf-6d4017c72137/element] with = | |=
8 @ test1 1e228m. ldebugl [JSONWP Proxy] Got response with status 200: {"sessionId":"2619664d-b@2c-43be-a2bf-6d4017¢72137" value": {"ELEMENT": "68700a2f- =
s [debug] [W3C] Responding to client with driver.findElement() result: {"element-6066-1led-a52e-4f735466cect 700a2f-7bbb-4335-8e61-C6ae774875F
g [HTTP] <—— POST /wd/hub/session/3f36ff12-7bbc-46ad-a3af-51e14b7d8d7d/element 200 738 ms - 88 W
& = [HTTP]
>* [HTTP] —-> POST /wd/hub/session/3f36ff12-7bbc-46ad-a3af-51e14b7d8d7d/element/68700a2f~7bbb-4335-8e61-c6ae774875F2/click
b 4:Run | # 5:Debug : TODO Terminal | 9: Version Control @ Event Log
IO Tests failed: 1, passed: 1 (a minute ago) 51:35 LF$ UTF-8% Gitmaster: W & @

178

Figure-9: Parallel execution on Real Android Devices.

www.kobiton.com




You can also find this example on our Github page as well:

As we discussed there are many other ways to achieve parallelization using
TestNG, so using your custom logic you can even execute tests for both iOS and
Android parallelly.

In the next chapter we’ll look at how you can use the Kobiton cloud testing
service to execute your test scripts against real-devices in the cloud.

179 www.kobiton.com



Chapter-10: Test Execution on
Real Devices Using Kobiton

Up until now, you’ve learned the basics of using Appium and testing against
emulators and simulators. However, for production apps it is imperative to test on
real devices to ensure the behavior is as expected for your end-users. The mobile
ecosystem is particularly fragmented given the wide range of device manufacturers
and different versions of operating systems. The only way of knowing that it really
works on real-devices is to test your app on a wide variety of devices.

It is imperative therefore to introduce real-device testing into your quality process.

The question then becomes “how”? After all, it would seem that working with
simulators/emulators is much simpler than buying physical devices which are
constantly being released. Fortunately, there are services which makes this a breeze.

A Cloud Device Provider provides a set of real devices on the cloud at scale. The main
purpose of any cloud device provider is to provide the testing infrastructure upon
which the test cases will be executed on, so the team is can be focused on producing
the test scripts.

The main advantage to use a cloud device service is that you will always have access
to the latest (and older) set of devices.

Another advantage is that users can see the test execution details such as
screenshots, execution logs, failure log details and even video. And if you have a
geographically dispersed team, everybody has access to the devices and the session
logs.

Popular cloud device providers include Kobiton, Perfecto, Browserstack and
Saucelabs. In this chapter we will look at using Kobiton.

Introduction to Kobiton

Kobiton focuses exclusively on real devices rather than emulators and simulators.
Kobiton uses its own Appium Server so you don’t need to worry about starting your
own Appium server - you focus on the test scripts!

Kobiton provides?*:

4 Kobiton Website: https://kobiton.com/real-device-testing/

180 www.kobiton.com



1) Rich test logs for true Root Cause Analysis
Kobiton provides various analysis and reporting features such as:
e Full video recording.
Screenshots.
Capture user interactions.
System metrics reporting.
Full device logs.

Script execution results.

2) Integration with your favorite tools
You can also integrate it with various tools such as:
e JIRA
Github
HockeyApp
Jenkins
Travis Cl

TeamCity

3) Powerful APIs

Kobiton provides the full support of Appium with major programming
languages such as Java, Python, C#, Node.js, Ruby and PHP and they have
also did partnership with Katalon Studio(A highly acclaimed and innovative
test automation tool).

4) Manual, Automated and Parallel testing supported

It provides support for parallel execution which is necessary for CI/CD process
and also supports:

® On-demand manual testing.
Automation testing.

Supports Appium and Selenium.
Mobile web and cross browser testing.
Ul testing.

Supports parallel script execution.

Full DevOps integration.

Now let’s see how easy it is to test your Appium script on real-devices in the
cloud.

181 www.kobiton.com



Step-by-step guide

1) Visit https://kobiton.com/ and register as a new user.

@ https://portal.kobiton.com/register

Sign up for a Free Trial
No Credit Card Required

Empowering M

Real Devices in the Cloud, Better Testing for You Enter account information

Access to Real Devices

Test on the devices you want, when you need them. )
appium

Run Manual or Automated Scripts
Test the way you want, no restrictions. appiumbook

Fix Issues Faster
Automatically created activity logs help you find and appiumbook@gmail.com
resolve issues more quickly.

123456789

™

\/ I'm not a robot

reCAPTCHA

Privacy - Terms.

License Agreements

Already have an account? Login Register

Figure-1: Kobiton: Registration Page.

2) After the successful registration you will get an email for the confirmation
from the Kobiton so you can confirm it.

Kobiton - Please verify your email address inbox x

Kobiton <noreply@kobiton.com> 6:42 PM (1 minute ago)
tome v

Welcome appium book!

Please click on the button to confirm your email address. If you did not register Kobiton with this email address, please ignore this email.

If you have any problems verifying your account, feel free to email us at support@kobiton.com.

Figure-2: Kobiton: Confirmation Email.

182 www.kobiton.com



3) Now you can access the Kobiton portal by providing valid credentials.

@ https://portal.kobiton.com/login?t=d0938f4c018dd87fbcce266aa402adb8916... O«

Kobiton

Empowering Mobile Developers

Your email has been successfully verified!
You can now login to Kobiton.

appiumbook

Password

Remember me

Forgot password? Register now

Figure-3: Kobiton: Login Page.

4) As part of the free trial, you get 120 minutes. By completing the survey you
can get an additional 30 minutes of testing.

@& https://portal.kobiton.com/devices or

> View your testing results O CEOICTOICIOEMOICO0

O Director or VP of Quality Assurance
O Director or VP of Software Engineering
@ Quality Assurance/Test Engineer

O Software Developer

O Product Manager

O Marketing

O Customer Experience

o Indie Developer

O Other

3. Primary reason for evaluating a mobile testing
solution:

@ Improve App Quality (minimize abandonment, improve app

store reviews)
O Improve Time-To-Market and shorten release cycles

O Replicate customer issues on specific devices

O | was asked to explore real-device testing

Claim your 30 minutes!

Figure-4: Select the preferences.

183 www.kobiton.com



5) Once you click on “Claim your 30 minutes!” you will be redirected to the
dashboard where you can see the devices.

@ Chrome File Edit View History Bookmarks People Window Help [ XSY = 100% @ Thu6:45PM Q @ =

®O® Hchex| [ rea x | i ko x | # Kob x | % kob x | B Che x | [} real x | @ Aut x | B Goc x | @ Che x | € MC X | g Inb X | M Inbc X | M Kob x i Kot x 4

& C @& https://portal.kobiton.com/devices o Y @ i

You have 15 days left in the trial. Purchase now to access to many more devices. [V EEERSTSIELELE]

@ Online Busy (O Offine | (@ @ Kobiton devices Congratulations! You've got 30 extra minutes. >

Devices

Kobiton Cloud Devices | 110 @& 4‘ ~

Galaxy Grand Prime Galaxy Note4 Galaxy S6 edge ! iPad Pro 10.5 (Wi-Fi)
o ) [ ] ‘ o
Android 5.1.1 Android 5.1.1 Android 6.0.1 o i0S 11.4

iPhone 5 (Global)
[ 3
i0S 10.3.3

.

iPhone 8 iPhone X LG G5
L X} L 3 o
i0S 11.4.1 i0S 11.4.1 Android 7.0

7 Moto G (3rd Gen) 7 Moto G (3rd Gen) Moto G Plus (5th Gen) 'N" Nexus 5
4 P 4 P S A ao
¥ Android 6.0 4 Android 5.1.1 Android 7.0 AL Android 6.0.1

7 Nexus 5X % Pixel XL "

Figure-5: Kobiton: Dashboard.

NOTE: Please make sure the device upon which you want to start execution is
Online (Available for execution) otherwise you will get the exception saying:
org.openga.selenium.SessionNotCreatedException: No device matching the
desired capabilities. Note that Kobiton provides exclusive/private devices if
needed.

& Online Busy (O Offine | (@ ¢ Kobiton devices

Kobiton Cloud Devices

Galaxy Grand Prime Galaxy Note4
(Y

Android 5.1.1

Android 5.1.1

184 www.kobiton.com



Figure-6: Device Availability.
6) Now on the dashboard page you can choose any device for test execution.
But before you choose the device for execution you need to upload the

mobile application which you want to automate by going into the Apps
section.

Search by app name, app id, pach

+

Click to add a new app ®
(.apk, .ipa, .zip)

Apps

Figure-7: Add a new app.

¢ & https://portal.kobiton.com/apps

0 8= E | resources 2 Q
mm || Favorites Earlier
8 B 5 Recents + DemoApp-iPhoneSimulator
Lo . . M DemoApp.apk

& iCloud Drive

[Z) Desktop

3 QuickTime PI...

. [ Documents
7% Applications
© Downloads

3 Devices
©) Remote Disc
[2) piska

AD 1ags
@ Red

Orange

Options Cancel

Figure-8: Select the application from finder window.

185 www.kobiton.com



Search by app name, app id, package name, bundle id, platform name or uploaded by

+ Uploading ...
Click to add a new app ® DemoApp.apk
(.apk, .ipa, .zip) [ o v v v e e )

Figure-9: Uploading the new .apk file

+ DemoApp.apk
File uploaded successfully and being
Click to add a new app ® processed on server. You need to
. . refresh your page to see the changes
(-apk, .ipa, .zip) after a few minutes.

Figure-10: .apk file uploaded.

7) Once the application is uploaded successfully you can get the app id for the
uploaded application because you need to pass this id as value of app key in
Desired Capabilities.

capabilities.setCapability("app", "kobiton-store:22304");

Or you can also select the application in the automation settings dialog, so
that you don’t need to manually write the app value in desired capabilities.

Apps Repository » TheApp
@ io.cloudgrey.the_app

-+

Click to add a new version @

(.apk, .zip) Remove
Version: 1.7.1.

{ Automation snippet

Figure-11: Get Automation snippet.

186 www.kobiton.com




Making the move to automation testing with Appium

+
Click to add a new version @ m TheApp

.apk, .zi
(-ap P) How to use in auto test session

Use "kobiton-store:v23560" as the value of the
"app" capability in your test.

Figure-12: app capability value

8) After noting down the app value you can move to the Devices section and in
the automation settings you will get the set of the Desired Capabilities (for
every programming language) which you need to use in order to execute the
test case on Kobiton device.

l'lmll’ - g a - -
" X J &
Android 6.0 Android 5.1.1
Show automation settings Pixel XL
W au | |
¢ g PN
Android 9
0HEO0

Figure-13: Show automation settings for Device.

187 www.kobiton.com



Automation Settings for Nexus 5X

Java

Session name

Automation test session|

Kobiton devices

Capture screen after every step

App type
® Web
~\

P R RN BT S S

4 Nexus 5X &
B Android 8.1.0 Ej

String kobitonServerUrl = "https://appiumbook:ce2bcbcd-4589-4254-
b03b-c4217db6bl8blapi.kobiton.com/wd/hub";

DesiredCapabilities capabilities = new DesiredCapabilities();
// The generated session will be visible to you only.
capabilities.setCapability("sessionName", "Automation test session");
capabilities.setCapability("sessionDescription", "");
capabilities.setCapability("deviceOrientation", "portrait");
capabilities.setCapability("captureScreenshots", true);
capabilities.setCapability("browserName", "chrome");
capabilities.setCapability("deviceGroup", "KOBITON");

// For deviceName, platformVersion Kobiton supports wildcard

// character *, with 3 formats: *text, text* and *text*

// If there is no *, Kobiton will match the exact text provided
capabilities.setCapability("deviceName", "Nexus 5X");
capabilities.setCapability("platformversion", "8.1.0");
capabilities.setCapability("platformName", "Android");

Figure-14: Automation Settings for Device.

As we want to execute test cases for a mobile application, you need to select
the ”Hybrid/Native from Apps” option.

Automation Settings for Nexus 5X

Kobiton devices

Capture screen after every step

App type
Web
Hybrid/Native from Url
Hybrid/Native from Apps

Select App from Apps Repo

PaArtrait

You might need to increase request timeout duration for testing your own application.
Click for the example.

Nexus 5X & I_D

Android 8.1.0

String kobitonServerUrl = "https://appiumbook:ce2bcbcd-4589-4254-
b03b-c4217db6bl8bRapi.kobiton.com/wd/hub";

DesiredCapabilities capabilities = new DesiredCapabilities();
// The generated session will be visible to you only.
capabilities.setCapability("sessionName", "Automation test
session");
capabilities.setCapability("sessionDescription", "");
capabilities.setCapability("deviceOrientation", "portrait");
capabilities.setCapability("captureScreenshots", true);
The maximum size of application is 500MB
By default, HTTP requests from testing library are expired
in 2 minutes while the app copying and installation may
take up-to 30 minutes. Therefore, you need to extend the HTTP
request timeout duration in your testing library so that
it doesn't interrupt while the device is being initialized.
capabilities.setCapabilitv("app". "<APP URL>"):

Figure-15:Choose Hybrid/Native from Apps.

Now as we have already uploaded the application to Kobiton server, so you
just have to click on “Select App from Apps Repo” button and select the

uploaded app.

188

www.kobiton.com



CdPADIIICIES.SEtCadpPadbIIICy( UEVICEUL IEelItacIon ,  POLCLarcC Jy

capabilities.setCapability("captureScreenshots", true);
Capture screen after every step // The maximum size of application is 500MB
App t // By default, HTTP requests from testing library are expired
pp type // in 2 minutes while the app copying and installation may
O Web // take up-to 30 minutes. Therefore, you need to extend the HTTP
. . // request timeout duration in your testing library so that
O Hybrid/Native from Url // it doesn't interrupt while the device is being initialized.
@ Hybrid/Native from Apps capabilities.setCapability("app", "kobiton-store:22304");

capabilities.setCapability("deviceGroup", "KOBITON");
EEE Select App from Apps Repo // For deviceName{ platformVersion Kobiton supports wildcard
// character *, with 3 formats: *text, text* and *text*
// If there is no *, Kobiton will match the exact text provided
capabilities.setCapability("deviceName", "Nexus 5X");

Figure-16: Click on Select App from Apps Repo button.

A TheApp

1 version, latest: 1.7.1 v

Figure-17: Select uploaded app.

And at last copy the set of Desired Capabilities.

Automation Settings for Nexus 5X

You might need to increase request timeout duration for testing your own application.
Click for the example.

g
Kobiton devices Nexttjsfx *e

D

String kobitonServerUrl = "https://appiumbook:ce2bcbcd-4589-4254-
Capture screen after every step b03b-c4217db6bl8blapi.kobiton.com/wd/hub";

App type DesiredCapabilities capabilities = new DesiredCapabilities();

// The generated session will be visible to you only.
Web capabilities.setCapability("sessionName", "Automation test
Hybrid/Native from Url Sesski)orll"); bi1

. X capabilities.setCapability("sessionDescription", "");
Hybrid/Native from Apps capabilities.setCapability("deviceOrientation", "portrait");
capabilities.setCapability("captureScreenshots", true);
. The maximum size of application is 500MB
== Select App from Apps Repo By default, HTTP requests from testing library are expired
in 2 minutes while the app copying and installation may
take up-to 30 minutes. Therefore, you need to extend the HTTP
request timeout duration in your testing library so that
it doesn't interrupt while the device is being initialized.

Portrait capabilities.setCapabilitv("app". "kobiton-store:22304"):

Figure-18: Copy Desired Capabilities.

189 www.kobiton.com



9) Now all we need to do is paste the desired capabilities to our test script and
run it. And here we are using the same android script which we have gone
through in early chapters.

% Chapter10-Test Execution on Remote Device(Kobiton) ) [ src ) '; test ) [ java ) € AndroidSampleTest ) A AndroidSampleTest firstTest ~ b 2% Git: ¥ o mQ
g Project v @ = & — @ AndroidsampleTestjava ~
2 v Iv; Chapter10-Test Execution on Remote Device(Kobi # . ) [3
& 15 G public class AndroidSampleTest { a
F _gradle b 5

.idea 7 public AndroidDriver driver;
8 “m
radle 18
o 3 19 @BeforeTest z
ou 20 public void setUp() throws MalformedURLException { §
src 21 String kobitonServerUrl = “https://appiumbook:ce2bcbcd-4589-4254-b@3b-c4217db6b18b@api . kobiton.com/wd/hub"; o
test 22 3
- 23 DesiredCapabilities capabilities = new DesiredCapabilities(); 8
jove 24 | capabilities.setCapability( capabilityNeme: “sessionName", value: "Automation test session"
€' AndroidSampleTest 25 capabilities.setCapability( capabilityName: "sessionDescription”, value: "");
Bz resources 26 capabilities.setCapability( capabilityName: "deviceOrientation”, value: “portrait"); *
0SSt 27 capabilities.setCapability( capabilityName: "captureScreenshots", value: true); z
-—DS_Store 28 capabilities.setCapability( capabilityName: “app", value: "kobiton-store:22304"); ®
M build.gradle 29 capabilities.setCapability( capabilityName: “deviceGroup”, value: “KOBITON" =
gradlew 30 capabilities.setCapability( capabilityName: "deviceName", value: "Nexus 5X");
dlew.b 31 capabilities.setCapability( capabilityName: "platformVersion”, value: "8.1.0");
gradlew.bat 32 capabilities.setCapability( capabilityName: “platformName”, value: “Android");
@ settings.gradle 33
Il External Libraries 34 . . . .
35 driver = new AndroidDriver(new URL(kobitonServerUrl), capabilities); 1
‘0 Scratches and Consoles 36 }
37
38 @Test
39 » public void firstTest() throws InterruptedException {
40 driver. findElementByAccessibilityId( using: “Login Screen").click();
41
42 +
AndroidSampleTest > setUp()
Run: AndroidSampleTest firstTest ]
» Q= 1 = = = 12 @ » @ Tests passed: 1 of 1 test - 535 103 ms
£ @ Default Suite 53s103ms /Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home/bin/java ...
8 @ Chapter10-Test Execution 0 535 103ms| Dec 07, 2018 1:42:55 AM io.appium.java_client. remote.AppiunCommandExecutorsl lanbdaso
:I 7] @ AndroidSampleTest 535103ms INFO: Detected dialect: 0SS
e @ firstTest 25133ms S
Default Suite =
® Total tests run: 1, Failures: 0, Skips: @ =
E
3 L]
2 L]
Process finished with exit code @
K 9: Version Control Terminal 4 Build = 0: Messages » 4:Run : TODO € Event Log
IO Tests passed: 1 (moments ago) 24:2 LF$ UTF-8 % Git:master : W &
Figure-19: Paste Desired Capabilities in Test Script.
10) Now when you run the script, you can see the session is created for the
<& C' @& https://portal.kobiton.com/sessions Yoo

Furcnase Business rian

(L)
a0
aw
From December 01, 2018 To December 07, 2018 ~
1 Session - 1 Minute
® Automation: 1
Sessions Running: 1 Passed: 0 Failed: 0 _
Complete: 0 Timeout: 0 Error: 0 Slandicid-hl
Terminated: O i0s: 0

® Manual: 0

Al Al Al Q

OS version

ice model

Nexus 5X o o
’ Running
Nexus 5X .

Automation test session
Today, 1:42 AM

Figure-20: Kobiton Session is created.

190 www.kobiton.com



11) Once execution is finished, you are able to analyze the logs, screenshots,

video and even HTTP commands.

<

Session Overview  HTTP Cor o

Sessions
/' Automation test session

/' No description

i Automation Native/Hybrid application appiumbook

1m 48s Timeout
D;c7,20|831142AM Dec 7,2018 at 1:44 AM

Network Activity Captured (HAR file)

Apps Installed Info

Automation Info
a73dbe3g-eeB8-4555-ab72-4e65e879781c True

kobiton-store:22304 181

Nexus 5X - Android 8.1.0

Nexus 5X

0257d8ag67dcbeef

1080x1920

TheApp 925MB-7.1.1 i0.cloudgrey.the_app Success

Portrait

V7.40

Figure-21: Session Overview.

< C & https://portal.kobiton.com/sessions/529665

Q %

D SR A S e S

5 POST Jelement/7bda7 179-81c7-4445-afa6- Response body
120ms
3789d5dcet4/click
us”s 0

<
HTTP Commands
Session:
Sessions Request body
1 POST /wd/hub/session B 415 671ms
{
2 GeT / &7ms 75337179-0£07-4445-afa6-3789d5dc3e 4"
}
3 er / @esms
4 PoST Jelomert T8sms

® 5312

The App

(=

Figure-22: HTTP Commandes.

191 www.kobiton.com




Video

Sessions

The App

Echo Box

Login Screen

Clipboard Demo

Webview Demo

>

List Demo

Photo Demo

Verify Phone Number

0:03/0:51

13851KB ¥

Figure-23: Execution Video.

Logs

Device

29762): Timezone override file found:
23.318 I/app process(29762): The ClassLoaderContext is a special shared library.
12:23.479 D/androidnantine(29762): Calling main entry con.andzoid.comnands.content. Content
29762): shutting down
: Background concurren cupnnu s
87): >>>>>> SIART com.android.
+ Dinesone overside £ils found: /datasmisczonel
7): The ClassLoadercontext is a special shared 1i
241470 D/Androidruntine(29787): Calling main entry com.android.commands. input.Input
)¢ injectXeyBvent: KeyEvent { action-ACTION DOWN, keyCode-

Sessions nt/icu/ica tzdata.dat

eed 79394 (4KB) MllocSpace objects, 39(1116KB) 10S objects, 420 fres, ISHB/Z6KD, paused Slius
o/ch:enL/)cL/lcu Traaca.dat
=y

) eventTine=5383180,

CODE_POWER, scanCode=0, metastate=0, flags=0x0, repeatCou

Service( 765): Waking up fron dozing (vid=1000 reas
r( 765): Blocking scree
; t 1
type=0 ingar= 55731854000
play: 0

429): Set power mod
)i hwc_setpoweriode: Setting mo:

0, eventTime=5383180, downTine

383

le

wnTine=5383180, deviceId=-1, so

180, devicerd

s/kobiton/Libzary /npplication support/Kob
atesession () ecrs/kobion/ Library /Application Sappo
nessessionfequosted logged a mmmr,q (161224 ~Qm-0500 (5ST))
ar

kobies/d-0257dBa86 dcbeet~1544121791514

[Appiun] _ap

on/kobies/d-0257d8a86Tdoboot 1544121791514/ aute/ad£d00c-001a 4950209 00147119905 /Denonpp-23912270-£985-
‘a4£d00cc-001a-49¢0-b2c9-0c4d71£199a5/Dem

JSER_PRESENT £ 10 3
{ act=android.intent 0} to com.goog droid.gus/.auth.setup gnals.Lockse
o
o { tent £ 0} to com.goog droid.gms/.trustagent
o 24511 Wbroadoastaueue( round execution not allowed: receiving Intent { tent £ 0} to dro: 1 ®
12-07 03:12:24.516 2/ ite() errno :
12-07 0 BN54X - Error in 12C Write
12-07 0. status
12-07 0 writo unlocked failed - PNSEX Maybe in Standby Mode - Retry
12-07 0. eeias
12-07 0 Siocovery configuration saual, not updating.
12-07 0. 1025): cqg: onReceive() : Action = android.intent.action.SCREEN ON
12-0703:12:24.553 1/SearchserviceCore(28237): Event Bus throsd is ensbled
12-07 03:12:24.558 W/zysotesd( 1044) sim nismacen for dex Systent.apk
12-07 03:12:24.558 W/zygotesd( 1044) chkoun mismatch for dox
12-07 03:12:24.603 W/aeasensery ceclicr.(zsu )i Starting with uo s):ss*o\l ham:ovn.
12-07 £(28237) SESSION handoverId is deprecated. Just don't.
15707 031121247603 W/searchoervicectiont (30237): ac googl id
12-07 03:12:24.603 W/SearchServiceClient (28237): at com.google.android

11e8-ba56-73531549

dev! o, Name" ) are not standard capabilities and should have an extension preti:
[Appium) 1owing capabilities wire brovided in the JSONWD desired Capabilitics chat are missing in WIC cupabilitica: [ appVersionId's appoS”, WppUEl’, moReser, fullne *ehromedriversxecut.
[Abpium] Creating mew AndroidUisutemator2briver (v.12.0) session
[Appiun] Capabili
[Appium]  udid: 0257d8ag67dcbeef
/Users/kobiton/Library/. tion Support/Kobiton/ 121791514, 2 7151, \Pp-23912270-£389-11e8-ba58-735315d9aa8b. apk

Figure-24: Execution Logs.

It’s that easy!
You can find the above test code on our github page:

Execute test cases on a Mobile Browser

Kobiton also supports mobile web testing in addition to native apps.

Testing for mobile web is really easy - you just need to select the “Web” option in

the Automation settings for the device and simply copy the desired capabilities. And

192 www.kobiton.com




because we’re testing a web application in this case, there is no need to upload an

app.

Automation Settings for Nexus 5X

Java

Session name

Automation test session|

Nexus 5X & I_D

Android 8.1.0

String kobitonServerUrl = "https://appiumbook:ce2bcbcd-4589-4254-
b03b-c4217db6bl8blapi.kobiton.com/wd/hub";

DesiredCapabilities capabilities = new DesiredCapabilities();
// The generated session will be visible to you only.

Description

Description

De up

Kobiton devices

capabilities.setCapability("sessionName", "Automation test session");
capabilities.setCapability("sessionDescription", "");
capabilities.setCapability("deviceOrientation", "portrait");
capabilities.setCapability("captureScreenshots", true);
capabilities.setCapability("browserName", "chrome");
capabilities.setCapability("deviceGroup", "KOBITON");

// For deviceName, platformVersion Kobiton supports wildcard

// character *, with 3 formats: *text, text* and *text*

// 1If there is no *, Kobiton will match the exact text provided
capabilities.setCapability("deviceName", "Nexus 5X");
capabilities.setCapability("platformversion", "8.1.0");

Capture screen after every step capabilities.setCapability("platformName", "Android");

App type

[@® Wweb |
~\

IR AT S S )

Figure-25: Automation Settings for Mobile Browser execution.

Moreover, if you want to manually test your mobile application on a Kobiton
device you can easily do that, you just need to select the device click on the

Launch button.

*

Launch device

OO

Figure-26: Launch device.

In this manual mode you can control the real device the same as if you had the

device in-hand.

193

www.kobiton.com




Medium Quality ~ SESSION APPS LIVE LOGS

Quit session after staying idle for 5 minutes

/" Session created at 12/07/2018 02:16 AM

2 Edit session description

-
-
vl
otos y
v oA
s | v,
e Walle
N

Screenshots

iTunes Store

Home

Health

A

Figure-27: Manual testing on device.

Kobiton offers many features including the ability to combine your own on-
premises devices with the cloud devices. A detailed review of all the Kobiton
capabilities are beyond the scope of this book but if you visit
https://docs.kobiton.com/ you can find lots of additional information and
services offered by Kobiton.

For more information about Automation testing with Kobiton visit:

https://docs.kobiton.com/automation-testing/using-kobiton-for-automation-

testing/

And for Manual testing with Kobiton you can find good documentation here:

https://docs.kobiton.com/manual-testing/overview/

Real-device testing should be a key part of your quality process. Fortunately this
is made easy by cloud device providers. Other providers apart from Kobiton
include Perfecto, Browserstack and Saucelabs.

194 www.kobiton.com



Chapter-11: Automating

Gestures

Up until now we have looked into basic Appium automation, such as finding and
clicking on a button or typing text into a text field. However, “real world” mobile
applications are more sophisticated and contain many complex Ul elements that
require user interactions such as double tap, long press, swipe left/right, pull

up/down and even multi-touch actions.

Appium supports the following gestures:

e Tapon anelement.
Tap on x, y coordinates.

width.

Press an element for a particular duration.
Press x, y coordinates for a particular duration.
Horizontal swipe: Using start and end percentage of the screen height and

e Vertical swipe: Using start and end percentage of the screen height and

width.

e Drag(Swipe) one element to another element.

e Multitouch for an element.

Appium supports these gestures using the TouchActions class.

TouchAction touchAction =

Some of the supported methods are:®

new TouchAction(driver);

Method Name

Purpose

press(PointOption pressOptions)

Press action on the screen.

longPress(LongPressOptions
longPressOptions)

Press and hold the at the center of an
element until the context menu event
has fired.

tap(PointOption tapOptions)

Tap on a position.

moveTo(PointOption moveToOptions)

Moves current touch to a new position.

> Official Appium API docs from the github page:

195 www.kobiton.com




cancel() Cancel this action, if it was partially
completed by the
performsTouchActions.

perform() Perform this chain of actions on the
performsTouchActions.

Before exploring each mentioned action we need to understand the significance
of perform() as it plays a vital role. The Appium client simply records all the
instructions and actions on the client side and stores the intermediate values in a
local data structure. The perform() method is used to send all actions to the
appium server - as soon as perform() is called, the intermediate actions and
instructions are converted to JSON and sent to the appium server, and then the
actual action is being performed. So for any gesture code the last method called
would be perform()

Note: This is a common omission during development, forgetting to call
perform() and wondering why your test isn’t working!

Appium fully supports native applications. So if the application is designed
natively for the platform (iOS or Android), then you can easily find the unique
selectors for automation, but there are case when you use cross-platform
development technologies such as react native, ionic or xamarin framework. In
this instance, sometime elements are not present for a particular screen or even
a whole application.

For example, most games are coded using the Unity3D platform rather than
native coding, so there would not be a single element that can be located by any
tool or even by the appium inspector. However we are not talking about game
automation right now.

The main takeaway here is that if you are not able to get the selector for any
element for any reason then only one survival option remains. Which is to get
the x, y coordinates for that element.

NOTE: Please remember that you can only click on that element using appium.
Now the question is how can you get the x,y coordinate?

e Itdepends...

e Because you can get the Pointer location in Android but you can not get it in
iOS devices.

196 www.kobiton.com




Getting the pointer location in Android:

1)
2)
3)

197

Move to Settings > Developer options

Enable the Pointer location.

Now move to any application for which you need the coordinates of a
particular location. Tap on the location and you will get the coordinates for

that spot at the top of the screen.
= . SHEN e o0 i v

Developer options

On

Bluetooth Audio Bits Per Sample

Bluetooth Audio Channel Mode

Bluetooth Audio LDAC Codec: Playback Quality

Input

Show taps

Pointer location

Drawing

Show surface updates

Show layout bounds

Figure-1: Enable the Pointer location.

www.kobiton.com



A oAt 922

The App

Choose An Awesome View

Echo Box
Write something and save to local memory

Login-Screlen

Clipboard Demo
Mess aroundl with the clipboard

Webview Demo
Explore the possibilities of hybrid apps

List Demo
Scroll through a list of stuff

Photo Demo
Some photofs with no distinguishing IDs

Verify Phone Number
A fake SMS jauto-verification screen

Figure-2: Get coordinates.

Getting the pointer location in iOS:

iOS does not support the pointer location and there aren’t even any third party apps
or tools which come to the rescue. Therefore you need to calculate it using screen
resolution and a little bit of prediction. In case you don’t get success at first, you can
use trial and error to get the needed location.

Now let’s look into each gesture one by one:

1) Tap on element
Method: tap(TapOptions tapOptions)

Usage: It is the simplest action, as the name suggests it will simply click/tap
on a particular location. It is a combination of press() and release()

Example:

TouchAction touchAction = new TouchAction(driver);

touchAction.tap(tapOptions()
.withElement(element(androidElement)))
.perform()

198 www.kobiton.com



NOTE: Here you can also put the wait along with the tap action, for example:

new TouchAction(driver)
.tap(tapOptions().withElement(element(androidElement)))
.waitAction(waitOptions(Duration.ofMillis(millis)))

.perform();

2) Tap on x, y coordinates
Method: tap (PointOption pointOptions)

Usage: It is used to tap on a particular x,y coordinate point.

Example:

TouchAction touchAction = new TouchAction(driver);
touchAction.tap(PointOption.point (1280, 1013))
.perform()

NOTE: Similar like Tap on element you can put the wait along with the tap action,
for example:

new TouchAction(driver)

.tap(point(x, y))
.waitAction(waitOptions(Duration.ofMillis(millis)))

.perform();

3) Press an element for a particular duration
Method: press(PointOption pressOptions)

Usage: It is used to apply the press action. After the press action you also
need to release so that the state would be in press mode. You do so by calling
the release() function after calling press().

Example:

TouchAction touchAction = new TouchAction(driver);
touchAction.press(element(element))
.waitAction(waitOptions(ofSeconds(seconds)))
.release()

199 www.kobiton.com



.perform();

4)

Press X, y coordinates for a particular duration
Method: press(PointOption pressOptions)

Usage: Similar to Press(ing) an element for a particular duration, here you
just need to pass x, y coordinates instead of an element and don’t forget to
call the release() function after calling press().

Example:

TouchAction touchAction = new TouchAction(driver);

touchAction.press(point(x,y))
.waitAction(waitOptions(ofSeconds(seconds)))

.release()
.perform();

200

Automating swipe actions

Before we look into the Horizontal swipe let’s understand how we can
automate

swipe actions generally.

Swiping is a combination of tapping + moving actions. Appium does not
provide a direct method for swiping, so you need to combine a few methods
in order to achieve swiping. For example if you want to perform swiping then
first you have to press on a particular point and then specify the particular
amount of time during which you want to perform the swiping action and at
last you to move to another point - and don’t forget to call the release
method which used to release all the actions. So it’s actually simple: first
press -> wait(duration of swiping) -> move to (moveTo()) particular location.

You might be wondering why can’t we directly use moveTo() ?

If you recall, using the press method requires you to eventually call the
release method. So we are basically mimicking a swipe by entering the press
state, moving to a location, and THEN releasing.

Swiping can have an up/down/right/left direction so you need to apply the
right logic and have to provide the x, y coordinates for the press() and

www.kobiton.com



moveTo() methods.

And also please note these appium methods to get the device screen
measurements:

The App
Choose An Awesome View

Echo Box
Write something and save to Jocal memory
50% of height
Login Screlen

A fake login|screen for testin

Clipboard Demo

Mess around with the cIipbo:{d 1 920

Webview Demo
Explore the possibilities o“rid apps

¢ 50% of width

List Demo
Scroll through a list of stuff

Photo Demo
Some photos with no distinguishing IDs

Verify Phone Number
Af SMS jauto-verification screen

Y

X'
1080

\ 4

Figure-3: Screen Measurements.

int heightOfScreen =
driver.manage().window().getSize().getHeight();

int widthOfScreen =
driver.manage().window().getSize().getWidth();

int middleHeightOfScreen = heightOfScreen/2;

// To get 50% of width
int x = widthOfScreen * 0.5;

// To get 50% of height
int y = heightOfScreen * 0.5;

201 www.kobiton.com



Here Width - X and Height = Y coordinates.

5) Horizontal swipe: Using start and end percentage
of the screen height and width

Method and Usage: As we discussed above there is no particular method for
Horizontal swipe, and you need to perform the combination of press()-
>wait()->moveTo(). The moveTo() method is new to us - it is used to move
to particular location. Its syntax is: moveTo(PointOption
pressOptions)

The secret to moveTo lies in the coordinates - you need to mention the
starting and ending x,y coordinates in such a way that swiping can done from
left = right OR right = left direction. Note that when we say swipe right, we
mean moving the content from right to left, but the physical gesture is is
moving to the left. See figure 4 below for clarification.

Example: Let say we want to swipe right on the screen, so in practice you
need to press on the right side and, without taking your finger off of the
device, move your finger to left side. So we need to move from in the Right to
Left direction in order to make the Right Swipe.

Referring to figure 4 below, we have the swiping Ul element placed on the
screen from location (0,360) to (1080, 780). Now in order to attempt swipe in
the right direction you have to first press anywhere in swipe area, for
example let’s say (972, 500), and now without taking away the press action
you need to move to left side suppose (108, 500) [Please note that Y
coordinate is constant as we just need to change the X coordinates for
swiping]. At that point we have achieved the swipe and now we can able to
release the action and at last call the perform method to send all commands
to the Appium server to perform on the UI.

202 www.kobiton.com



203

P:0/1 dX: 0.0 dY:2.5  Xv:0.0 Yv:0.108 _ Proanonisizennon|

= My Drive Q m o
(0,360)  swiping part
Right Swipe
t— =)
Chap11-Automating gestures CPU
You've opened frequently this we... You edited tod
(1080,780)
Folders Name™

eoe

.
.
.

Figure-4: Swiping in action.

This is just one scenario for achieving a swipe gesture. ldeally first we need to
make a decision as to what is the “right side of the screen”. We do this by
considering 90% of the screen width. For example, if the screen resolution is
1920 x 1080, 1080 is the width of Screen and 90% of that width would equals
to 972, so we have got our X coordinate for what we consider the “Right”
side. In a similar manner we will need the X coordinate for the Left side and
this time we can consider 10% of the width which would give us an X
coordinate of about 108. So we have got X coordinates for Left and Right
direction. For the Y coordinate we can choose any value as long as it falls in
the swiping area - for example, let’s say our swiping area is between (0, 360)
to (1080, 780), so you can choose any value for the Y coordinate in between
360 to 780.

NOTE: /t is important that the Y coordinate have same value because we are

www.kobiton.com



focusing on only swiping (not scrolling) so only the X coordinate will change
during the process and Y will remain constant. Ideally you should choose the
half height of swiping area for Y coordinate.

Finally, you can perform the swipe gesture:

TouchAction swipe = new TouchAction(driver)
.press(PointOption.point(972,500))
.waitAction(waitOptions(ofMillis(800)))
.moveTo(PointOption.point(108,500))
.release()

.perform();

Same way if you want to swipe in the left direction you have to first press on
the left side and move to the right side.

NOTE: This method works in a similar way on Android and iOS but the
location differs according to Mobile device being used (given the swipe is
dependent on coordinates which is dependent on screen resolution).
Moreover on the iOS side you can’t find the location directly so you will need
to use a trial and error approach.

6) Vertical swipe(scroll): Using start and end
percentage of the screen height and width

Usage: Scroll is the same as swipe but the direction is different. In swiping we
are dealing with horizontal direction where as in scrolling we are dealing with
vertical direction - but the rest of the logic will remain the same.

Scrolling can done in the up - down OR down = up direction.

Example: Let’s look at scrolling Down. On a mobile device in order to scroll
down on screen we swipe in the “down to up” direction. It’s actually 3 steps
we need to complete:

1) Find the swiping area.
o Starting point = (0,360)
o Ending point = (1080,1920)

2) Mark the scrolling points (We will use the height from scrolling area

204 www.kobiton.com



only. As per below image, the scrolling area is starting from
approximately 30% of the screen height and ending at the end of the
screen).

o Down area point:
i) X =Middle of Screen= 0.5 x 1080 = 540
(This will be same for starting and ending location)
ii) Y =95% height of Screen = 0.95 x 1920 = 1824.
Location = (540,1824)
O Up area point:
i) X =Middle of Screen=540

ii) Y =35% height of Screen =0.35x 1920 =
672(Percentage value must be >30%).

Location = (540,672)

3) Perform scroll action using Appium.

TouchAction swipe = new TouchAction(driver)
.press(PointOption.point(540,1824))
.waitAction(waitOptions(ofMillis(800)))
.moveTo(PointOption.point(540,672))
.release()

.perform();

205 www.kobiton.com



P-0/1 dX-10.0  ONEAOIMX-0.117  Yv:0.117 _ PISuNOMSize: 0.01

= My Drive Q m

(0,360)

—_—_—0 =0 W

SSE00Q

v

(1080,’0”

Figure-5: Scrolling in action.

Scroll up will work the same but with different location points.

7) Drag(swipe) one element to an another element

Dragging one element to another element is one kind of swiping action.

But here location in coordinates would not matter as we have both of the
elements(1. Element which needs to be dragged, 2. Element upon which
another element will be dragged).

TouchAction swipe = new TouchAction(driver)
.press(ElementOption.element(elementl))
.waitAction(waitOptions(ofSeconds(2)))
.moveTo(ElementOption.element(element2))

.release()
.perform();

206 www.kobiton.com



8) MultiTouch

As the name suggests it means multiple touches happening at the same time.

For example on iOS if you want to move to the Main screen, you need to use
5 fingers and do a swipe.

Multi Touch is handled by the MultiTouchAction class. It has a
add(TouchActions touchActions) method soin which we need to pass
a TouchActions object.

So let say you want to press on 5 different points at a time then first you
need to create 5 TouchActions, but here the important thing is we are not
having a perform method at the end. We just need to call the release method
for the TouchAction object, and then pass those values into the add method
of the MultiTouchAction class.

You can perform Multi Touch for:

1) Multiple touches at a time.

TouchAction touchActionOne = new TouchAction();
touchActionOne.press(PointOption.point (100, 100));
touchActionOne.release();

TouchAction touchActionTwo = new TouchAction();
touchActionTwo.press(PointOption.point (200, 200));
touchActionTwo.release();

MultiTouchAction action = new MultiTouchAction();
action.add(touchActionOne);
action.add(touchActionTwo);

action.perform();

OR if you want to perform multi touch on particular elements then use the
below code snippet.

TouchAction touchActionl = new TouchAction(driver)
.tap(ElementOption.element(el))
.release();

TouchAction touchAction2 = new TouchAction(driver)

.tap(ElementOption.element(e2))
.release();

207 www.kobiton.com



MultiTouchAction action = new MultiTouchAction();
action.add(touchActionl);
action.add(touchAction2);

action.perform();

2) Swiping using multiple fingers.

TouchAction touchActionOne = new TouchAction();
touchActionOne.press(PointOption.point (100, 100));
touchActionOne.moveTo(PointOption.point(500, 100));
touchActionOne.release();

TouchAction touchActionTwo = new TouchAction();
touchActionTwo.press(PointOption.point (100, 200));
touchActionTwo.moveTo(PointOption.point(500, 100));
touchActionTwo.release();

MultiTouchAction action = new MultiTouchAction();
action.add(touchActionOne);
action.add(touchActionTwo);

action.perform();

NOTE: As mentioned earlier only MulLtiTouchAction should call the perform()
method at the end. For TouchActions , the perform() method should not be
called otherwise instructions will be sent to the Appium server and the click will
happen before the Multi Touch action.

In this chapter we have looked into the most used scenarios in the Appium
world. These methods all work on both Android and iOS.

More details about all the different TouchAction methods can be found on the
official appium docs on the github project.

208 www.kobiton.com



Chapter-12: Appium Tips and
Tricks

You’'ve made it this far! By now you’re a full-fledged Appium ninja. It’s time to round
out some of your new skills with additional tips and tricks.

Appium is a sophisticated and ever updating testing platform, and with a growing
user base forming, you’re bound to see some cool tricks by monitoring discussion
boards and blogs.

In this chapter, we'll look at some practical tips that you can put into practice
immediately to improve your test case authoring. Let’s get started!

1) How to check whether an Android app is
already installed or not?

There are scenarios in which you want to check out whether your Android
app is already installed on the device or not, but why would you need that?

A very simple (but common!) use case requires testing a part of the app that
is only accessible to logged-in users. So every time you execute your test
case, the first step would be to login which is a time consuming operation
(from an execution perspective).

We can skip the login if we’ve already logged in on the previous test
execution, as it takes unnecessary time. We can do 2 things:

1) Set the desiredcapabilities for “noReset” as true and “fullReset” as
false. So if your app has already been installed, Appium neither
uninstalls it nor clear the cache data. It will simply open the app every
time, So login will take place only at once, when you open the app
first time after installing it.

2) To avoid reinstalling the app every time, fire $ adb shell pm
list packages onyour terminal - it lists all the packages of
installed apps. You can create test logic like if the app you want to
automate is displayed on that list then you can skip the installation.

Now the question is how would you fire this command within your
programming language?

In Java this is done using the ProcessBuilder class:

209 www.kobiton.com



String line;
Process p = Runtime.getRuntime().exec("adb shell pm list
packages");

BufferedReader input = new BufferedReader(new
InputStreamReader(p.getInputStream()));

while ((line = input.readLine()) != null) {
System.out.println(line);
}

input.close();

2) How to enable mouse pointer location on
Android at runtime ?

As we discussed in an earlier chapter, if there is no unique locator assigned to
a Ul element then the only option is to tap on a particular point. By enabling
“pointer location” in developer options in Android we can get the x, y
coordinates for any point.

Moreover having the mouse pointer location helps so much in debugging,
especially whenever you are dealing with swipe, touch and scroll functions in
Appium.

But what if you are dealing with remote devices(such as Kobiton or
BrowserStack devices)?

There are case in which you cannot access the remote device before
executing the automation test cases. So you will need some way to enable
the pointer location on that devices at run time.

If you want to enable mouse pointer location using the terminal then fire
command:

$ adb shell settings put system pointer location 1[UseO
for disable]

In Java you can use this code:

public static void main(String[] args) throws IOException,
InterruptedException {

ProcessBuilder pb = new ProcessBuilder("adb", "shell",
"settings", "put", "system", "pointer_location", "1");

210 www.kobiton.com



Process pc = pb.start();
pc.waitFor();
System.out.println("Finish!");

You can find this example on our github page on our github page:

Pratik

Figure-1: Android Point Location Enabled.

3) How to capture Screenshots On Test Failure?

This is the most vital feature of Appium (and Selenium). Practically speaking,
with automation you are not observing the execution of all test cases, so in
case a failure occurs you won’t have the exact details of the failure. That’s
why this feature comes in handy, because it will capture the screenshot
whenever a failure occurs. And by looking at the screenshot sometimes you
can quickly figure out the failure cause without taking a look at the error log.

Note: Cloud device platforms like Kobiton offer the ability to automatically
take not only screenshots of every action, but also record full video of your
test sessions as well as detailed Appium and device logs.

Below is the code you use to capture a screenshot:
private void takelLocalScreenshot(String imageName) throws
IOException {

File scrFile = ((TakesScreenshot)driver).
getScreenshotAs (OutputType.FILE);

FileUtils.copyFile(scrFile, new
File("failureScreenshots/" + imageName +

}

‘.png"));

But we need to call this method only if test cases are failing or being skipped.
Thus we need to check the status of the test case, and, as we are using the

211 www.kobiton.com



TestNG test framework, we can use its methods to check the status of the
executing test case.
@AfterMethod(alwaysRun = true)

public void afterMethod(final ITestResult result) throws
IOException {

if (result.getStatus() == ITestResult.FAILURE ||
result.getStatus() == ITestResult.SKIP) {
takeScreenshot(result.getMethod().getMethodName().toLowerCase
() + "_" + System.currentTimeMillis());

}

This code example works for both iOS and Android. The code is implemented
in the github repository BaseTest.java

4) How to dismiss dialogs/alerts automatically ?

In mobile application notifications, popups and dialogs occur at random so in
order to access the app we must handle that immediately as soon as they
appear.

Appium can handle the system dialogs/alerts in 2 ways:

1) Manually: In this approach you have to find the locators of the
allow/deny button of the element and then performa click()
action on it.

2) Automatically: You can set the desired capabilities to auto accept or
deny the alert/dialogs.

Auto Accept the Alerts:

capabilities.SetCapability("autoAcceptAlerts”, true);

Auto Dismiss the Alerts:

capabilities.SetCapability("autoDismissAlerts", true);

In some scenarios when you are not able to get the dialog elements, you can
leverage the Appium image comparison feature and find the element by
image. We will look more into that feature in a subsequent chapter.

5) How to handle notifications in Android?

Push notification assertion is a common exercise you need to be familiar with
because many apps send a push notification while you are accessing the app.

212 www.kobiton.com



Appium provides a super easy way to open notifications - you just have to call
the openNotifications() method.

You can get the title of the notification using android:id/title and the
content of the notification using android:id/text locators.

For example:

driver.openNotifications();

List<AndroidElement> titleElement =
driver.findElements(By.id("android:id/title"));

List<AndroidElement> contentElement =
driver.findElements(By.id("android:id/text"));

for (int i = @; i < titleElement.size(); i++) {

System.out.println(titleElement.get(i).getText() +

no, n

+ contentElement.get(i).getText());

}

See AndroidTricks.java on our github repository.

NOTE: driver.openNotifications() method only applies to
AndroidDriver object. It is not available for IOSDriver.

6) How to make test cases fail fast in order to
quickly get an error message?

As strange as the name of this trick may sound, there are cases when you
want to fail your test cases faster in order to get the error message to fix the
test case.

Using the newCommandTimeout desired capability you can specify the time
in seconds for which Appium will wait for a new command from the client
before assuming the client quit and ending the session.

capabilities.setCapability("newCommandTimeout", 15);

213

If you are executing the test cases locally you want them to fail quickly, so
ideally you should wait for 10 to 20 seconds (depends on app) because during
that time app will load all the resources. With remote devices, due to
network latency and other reasons, apps on remote device may take more
time to load the resources so for remote execution that time period should
be closer to 60 seconds.

www.kobiton.com



7) How to handle the hide_keyboard() method?

Essentially, it’s as simple as calling hide keyboard(). However, the
hide_keyboard() method works differently on iOS and Android because
the internal architecture of the soft keyboard on both platforms is not the
same. It also depends on the physical device model and its operating system
version. Therefore, standard practice is you should put the
hide_keyboard() method in a try/catch block.

try {
driver.hide_keyboard();

} catch(Exception e) {}

214

8) How can you write test cases faster?

Unfortunately QA engineers are facing increasing pressure to deliver more,
faster. In this Agile world, requirements and releases are changing faster than
ever which means your Application Under Test is constantly changing.

And with continuous deployment, there is a good chance your test case
becomes obsolete before that glorious bug is discovered.

The following tips will help you to develop test cases at a faster pace:

e Use alocal appium server and local device: Appium performs the
best with a locally installed appium server and having the script
execute on a physically connected real device. Save the cloud device
testing for increased coverage testing and for full regression tests.

e Extract all the Ul element locators of the application at first go: You
can simply navigate the whole app with Appium Inspector (or another
tool) and note down all relevant Ids, text or class name for the Ul
elements. The objective here is to save time by getting all the element
locators at first go, so you won’t have to find the locator of element
when you are in the middle of writing your test case.

e Communicate with developers and assign a valid, and unique, ID to
Ul elements: This is the most common scenario where no unique id,
class name or text is assigned to a Ul element so you have to use the
XPath locator which might contain the index. But relying on XPath
indexes is brutal especially when your application under test is under
development, because minor changes in the Ul can change the index
of all elements. As a point of cooperation between QA and
Development, a naming convention or best practice should exist the
ensure unique IDs are used. Whenever you find yourself using an

www.kobiton.com



XPath, stop to ask why and see if you can have the dev team provide
unique IDs instead.

10) How to handle to mobile data, wifi and
airplane mode in Android?

In order to automate various connectivities such as mobile data, wifi and
airplane mode, Appium provides a ConnectionState class for setting and
getting the network connection for a connected android device/emulator.

For example if you want to turn on only wifi(Not mobile data and airplane
mode), you can use this command:

ConnectionState state = driver.setConnection(new
ConnectionStateBuilder().withWiFiEnabled().build());

You can see the example on our github page.

This APl works based on the android device OS versions so please go through
the official appium documentation in order to get more information.

NOTE: The above mentioned APIs are not available for iOS.

11) How to switch context?

There are two main types of context in Appium:

1) WEBVIEW

2) NATIVE
While we are working with a native application, the context will be NATIVE.
And when webview is being used on some screen it will have the WEBVIEW
context. Sometimes you actually have both in a single application. You might
have experienced the webview when you are dealing with payments in an
application- generally the payments page is integrated the in form of
webview (being provided by the payment gateway). So in that case you need
to change the application context from NATIVE to WEBVIEW in order to get
control of WEBVIEW elements.

Using the below code you can get the current context of your app:
String context = driver.getContext();

In a similar way you can get the all contexts available to automate using:

215 www.kobiton.com



Set<String> contextNames = driver.getContextHandles();
And using this code you can change the context to WEBVIEW:
driver.context("WEBVIEW");

You can use the this method in order to change the context to WEBVIEW if it
is found:

public void changeDriverContextToWebView(AppiumDriver driver)

{

Set<String> contextHandles =
driver.getContextHandles();

for (String name: contextHandles) {
if (name.equals("WEBVIEW"))
driver.context(name);

12) How can you minimize and reopen the app
again?

There are some scenarios where you need to minimize the application and
need to re open it without killing the current session. Using the
runAppInBackground(Duration time) method you can hide your
application for a particular duration.

For example if you want to minimize application for 5 seconds then you
might use:

driver.runAppInBackground(Duration.ofSeconds(5));

13) How to start Appium Server
programmatically?

In all our examples up until now we have presumed that you have started the
appium server explicitly using the command line or using the Appium
Desktop application.

216 www.kobiton.com



Now when you are thinking to integrate appium Ul test cases with Jenkins (or
generally within in a CI/CD pipeline) you have two options to start the Jenkins
server:

1) Specify the command($appium&) in the build section of Jenkins to
run the appium server.

2) Start the Appium server by writing the code in the test framework in
such a way that the server starts before the tests execute, and quits
automatically at the end of the execution.

Here, option 1 is not advisable because if a test failure occurs then the
Appium server will be continuously running and occupying memory of the
physical server. While in option 2 we have server quit code written at the end
of execution, so even if failure occurs it will quit the Appium server and free
the space in memory.

You can start the server using 2 classes:

1) AppiumDriverLocalService: Itis simply used to start and stop
the appium server.

2) AppiumServiceBuilder: This class is used to build the appium
service, here you can specify the appium server url, port, desired
capabilities and some other parameters. This is recommended if you
really want to customize the server details.

So let’s look into the example of both classes:

AppiumDriverLocalService:

AppiumDriverLocalService appiumDriverlLocalService =
AppiumDriverLocalService.buildDefaultService();

public void setUpPage() throws IOException
{

AppiumDriverLocalService appiumDriverlLocalService =
AppiumDriverLocalService.buildDefaultService();

appiumDriverLocalService.start();

}
public void tearDownAppium()
{
super.tearDownAppium();
appiumDriverLocalService.stop();
}

217 www.kobiton.com



In the above example Appium will start the server using default url and port.
You can find this example at our github project.

AppiumServiceBuilder:

AppiumServiceBuilder builder;
AppiumDriverlLocalService appiumDriverLocalService;

public DesiredCapabilities getDesiredCapabilities()
{

DesiredCapabilities desiredCapabilities = new
DesiredCapabilities();

return desiredCapabilities;

public void startServer() throws IOException {

DesiredCapabilities desiredCapabilities =
getDesiredCapabilities();

AppiumServiceBuilder builder = new
AppiumServiceBuilder();

builder.withIPAddress("127.0.0.1");
builder.usingPort(4729);
builder.withCapabilities(desiredCapabilities);
builder.withArgument(GeneralServerFlag.SESSION_OVERRIDE);

builder.withArgument(GeneralServerFlag.LOG_LEVEL,
"error");

appiumDriverLocalService =
AppiumDriverLocalService.buildService(builder);

appiumDriverLocalService.start();

public void stopServer() {
appiumDriverLocalService.stop();

Here as you can see appium will use Port: 4729, URL: 127.0.0.1 with some
Desired Capabilities and flags.

You can find this code at out github page.

218 www.kobiton.com



Hopefully you found (or will find!) these tips and tricks useful as you progress your
journey of being an Appium expert. The Appium community is constantly expanding
and you'll find tremendous tips and tricks shared by other developers and testers.
Keep reading forums and blogs to keep your knowledge up to date.

Jonathan Lipps, the project lead of Appium, has created an amazing blog at
https://appiumpro.com in which he has compiled some of the best practices and
tricks to use Appium in an effective way. We strongly recommend you visit this blog
and subscribe to the helpful mailing list to continue learning interesting things about
Appium.

219 www.kobiton.com



Chapter-13: Image Comparison
Using Appium

The mass advancement in machine learning and artificial intelligence is affecting
every sector of every industry, and test automation is no exception.

Al is being used in multiple areas of software testing, including:

1) Visually automated testing: Drive testing through the Ul by using Image
Comparison

2) Automated API Testing: Using machine learning algorithms we can analyze
the API calls in more effective ways

3) Test Coverage: Knowing what to test is a science unto itsel - sometimes a
small change has a large impact or vice versa. Using Al tools you can know
what areas of the app changed based on source code analysis and which test
cases should be executed (or updated)

4) Self-Healing Test Scripts: The most common scenario in automation test
cases is test case failure due to locator changes. In order to fix that we need
to find the valid locator again which is time-consuming and happens
frequently. Machine learning/Al algorithms can learn and observe the
changes of an application’s domain object modeling structure and can
automatically suggest the new locators to use.

5) Automatically write the test cases: As Al keeps improving, we will see an
increased ability for test cases to be automatically created, based either on
self exploring or by user observation.

Most of the Al solutions are being developed by 3rd party vendors and not within
the Appium framework directly. However, the Appium community recently
introduced the Image comparison feature which is great for testing at the Ul level
and comparing images, which makes our test scripts less brittle. Essentially, we get
the benefit of a new Image locator strategy we can use in our test scripts.

The feature was developed by incorporating OpenCV, one of the leading image
comparison libraries.

This chapter is split into 2 sections:

1) Setup and Linking OpenCV with Appium
2) Using the Image comparison feature in automation

220 www.kobiton.com



Setup and Linking OpenCV with Appium

In order to link the OpenCV library to Appium, we must install the Appium CLI. This is
3 step process:

1) Install the Appium CLI.
2) Install the OpenCV library.
3) Link the OpencCV library with Appium.

So let’s look into all options one-by-one.

1) Install Appium CLI

1) Make sure you have installed node and npm. If you have brew
installed on your mac then you can just execute: $ brew install
node to install node.js along with npm.

2) Install appium: $ npm install appium

3) Verify that appium is installed correctly using the command: $
appium -v

4) Also check the path where Appium is installed: $ which appium
and move to that path.

bin

include

lib

libexec
local

shin

share
standalone

bin
Caskroom
Cellar

etc
Frameworks
git
Homebrew
include

lib

opt

shin

share

var

& Disk2

& Macos

@ Network
Remote Disc

! Applications
@ Library
opt
¥ System
¥ Users

»  2to3

»  2t03-2

»  2t03-2.7

» 2t03-3.7

» ab

» aclocal

» aclocal-1.16
apachect|
appium
appium-doctor
»  apxs

» argon2

» asn1Coding

» asn1Decoding
» asnilParser

» aspell

» aspell-import

vvwvyw
vVVvVvVVvVVvYYyY
vVVvyVVYVvVVYYVYY

VVVVYVVVYVVYVVYVVYY
Pi e
/[

Figure-1: Appium location.

5) Now find the actual path of the appium binary and move to it.

221 www.kobiton.com




o ® = appium Info

appium 44 bytes
» 5 Modified: 30-Oct-2018 at 12:08 PM

V¥ General:

Kind: Alias
Size: 44 bytes (Zero bytes on disk)
Where: Mac os » usr » local » bin
Created: 30 October 2018 at 12:08 PM
Modified: 30 October 2018 at 12:08 PM

Original: /usr/local/lib/node_modules/
appium/build/lib/main.js

Figure-2: Appium binary location.

& Disk2 ] Applications bin bin » libvorbis.dylib appium

> > > >
& Macos > # Library > include > Caskroom » ,  libvorbisenc.2.dylib appium-doctor
@ Network > opt > lib > Cellar » ¥l libvorbisenc.a ios-deploy
Remote Disc > % System > libexec > etc » ,  libvorbisenc.dylib nightwatch
&l Users > local > Frameworks > »_ libvorbisfile.3.dylib npm
> sbin > git » |« libvorbisfile.a test
share > Homebrew > » libvorbisfile.dylib
standalone > include > hl libvpx.a
lib » , libwebp.7.dylib
opt > %) libwebp.a
shin > » libwebp.dylib
share » » libwebpdecoder.3.dylib
» % libwebpdecoder.a

var
»  libwebpdecoder.dylib
» libwebpdemux.2.dylib
%) libwebpdemux.a
»  libwebpdemux.dylib
»  libwebpmux.3.dylib
% libwebpmux.a
»  libwebpmux.dylib
»  libx264.152.dylib
% libx264.a
» libx264.dylib
» libx265.165.dylib
%] libx265.a
»  libx265.dylib
» libxvidcore.4.dylib
%] libxvidcore.a
» libyaml-0.2.dylib
%] libyaml.a
» libyaml.dylib
» libzip.5.0.dylib
»  libzip.5.dylib
» libzip.dylib
node_modules >

Figure-3: Appium Node module.

As you can see in the above screenshot all globally defined node modules are
present under /usr/local/lib/node_modules |location, so you have to install
the OpenCV library at this global location.

2) Install the OpenCV library

1) As we discussed previously we need to install the OpenCV module
globally so we will use the -g flag. Use this command to install the
OpenCV library for node: $ npm i -g opencv4nodejs

After successful installation you can find the opencv4nodejs library
under the same global location( /usr/local/lib/node_modules).

222 www.kobiton.com

vYVYVYVvVY




» |5vor5|senc.§,ay|b appium

& Disk2 > % Applications > bin > bin >
&l Macos » [ Library > include > Caskroom »  bxl libvorbisenc.a appium-doctor
@ Network > 1 opt > 1 lib > [ cellar »  » libvorbisenc.dylib " ios-deploy
Remote Disc > % System > libexec > etc » + libvorbisfile.3.dylib nightwatch
% Users > local > Frameworks » k%l libvorbisfile.a npm
> sbin I git > . libvorbisfile.dylib opencvanodejs
share > Homebrew » [l libvpxa
standalone > include » 4 libwebp.7.dylib
lib » %] libwebp.a
opt » » libwebp.dylib
sbin » » libwebpdecoder.3.dylib
share > %) libwebpdecoder.a
var » »  libwebpdecoder.dylib
»  libwebpdemux.2.dylib
%) libwebpdemux.a
»  libwebpdemux.dylib
»  libwebpmux.3.dylib
%) libwebpmux.a
» libwebpmux.dylib
» libx264.152.dylib
W% libx264.a
» libx264.dylib
» libx265.165.dylib
% libx265.a
» libx265.dylib
» libxvidcore.4.dylib
% libxvidcore.a
» libyaml-0.2.dylib
%! libyaml.a
» libyaml.dylib
» libzip.5.0.dylib
» libzip.5.dylib
» libzip.dylib

Figure-4: opencv4nodejs Node module.

3) Link the OpenCV library with Appium
1) Now we need to link this module with Appium, using:
$ npm link opencv4nodejs

NOTE: You can also install the opencv4nodejs package inside the
appium > node_modules directory instead of linking.

2) Now move to the appium node module and move to the
node_modules directory, there you will find that opencv4nodejs is
linked.

223 www.kobiton.com

Yy vvvvy




[ NIDVOTDISENnc. Z.aynb
%] libvorbisenc.a

»_ libvorbisenc.dylib
» ' libvorbisfile.3.dylib
%] libvorbisfile.a

» libvorbisfile.dylib

%] libvpx.a

»  libwebp.7.dylib

%] libwebp.a

»  libwebp.dylib

» ' libwebpdecoder.3.dylib
%] libwebpdecoder.a

»  libwebpdecoder.dylib
»  libwebpdemux.2.dylib
%] libwebpdemux.a

» ' libwebpdemux.dylib
» ' libwebpmux.3.dylib
%) libwebpmux.a

»  libwebpmux.dylib

» libx264.152.dylib

%] libx264.a

» libx264.dylib

»  libx265.165.dylib

appium
appium-doctor
ios-deploy
nightwatch
npm
opencv4nodejs

vV V.V vVvVYyyV vy

R

I

AUTHORS

bin

build
CHANGELOG.md
CONDUCT.md
CONTRIBUTING.md
GOVERNANCE.md
gulpfile.js
IDEAS.md

lib

LICENSE
node_modules
npm-shrinkwrap.json
package.json
packweb.json
README.md
RELEASE.pdf
ROADMAP.md
triagers.json

normalize-path
npm-run-path
npmlog
number-is-nan
oauth-sign
object-assign
on-finished
on-headers
once

Al opencvanodejs

openssl-wrapper
os-locale
os-tmpdir

p-defer

p-finally
p-is-promise
p-limit

p-locate

p-try

pako
parse-bmfont-ascii
parse-bmfont-binary
parse-bmfont-xml

%] libx265.a

» libx265.dylib parse-headers

»  libxvidcore.4.dylib parse-j.so.n

%] libxvidcore.a parse-listing

»_ libyaml-0.2.dylib parseurl

%] libyaml.a path .

» | libyaml.dylib path—féXlsts

» libzip.5.0.dylib path-is-absolute

» ' libzip.5.dylib path-key

» libzip.dylib path-parse
node_modules path-to-regexp

- path-tvpe

\d vV V vV vV vV vV Vv VY

vV V V V V V V V V V V V V V V V V9V V9V VVvVYvVvYyYy

Figure-5: opencv4nodejs module is linked with appium.

That’s it, now you are ready to use Image comparison feature in Appium.

NOTE: You can also directly install the opencv4nodejs node module under
Appium node_modules, the steps would be:

1) Move to appium directory: $ cd

/usr/local/Lib/node_modules/appium

2) Install opencv4nodejs: § npm install opencv4nodejs

Using the Image comparison feature in automation

Why do we need the image comparison feature in appium?

There are cases when in the application there is no unique locator present for a
particular Ul element, and in that case, you can’t do anything except tapping at a
particular location which is a very fragile operation (that is, prone to failure). It is
workable only if the location of that Ul element is static every time - if the Ul
element is changing its location every time you open your application or based on
the device it’s executing on, then tapping on a particular location isn’t the preferred

224

www.kobiton.com




option. With the new image comparison feature inside Appium, we have an image
locator strategy. Using this locator we locate elements based on their image.

With the image locator strategy, instead of typical unique locators, you need to pass
the string which is the Base64 encoded format of the image.

There are many ways to get the Base64 encoded version of the Image, but we use
the simplest.

Use this method to convert an image(.png/.jpg file) to Base64 String format.

public String getReferenceImageB64(String imgPath) throws
URISyntaxException, IOException {

URL refImgUrl =
getClass().getClassLoader().getResource(imgPath);

File refImgFile = Paths.get(refImgUrl.toURI()).toFile();

return
Base64.getEncoder().encodeToString(Files.readAllBytes(refImgF
ile.toPath()));

}

Now that we have the image encoded as Base64, we can locate elements by this
image.

Image Locator Strategy:

MobileElement elementByImage = (MobileElement)
driver.findElementByImage(refImageBase64);

NOTE: Just as with the other locator strategies we can perform actions like cLick (),
getText(), sendKeys() etc...

Now to understand this better let’s take one practical automation test case which
uses the image locator strategy.

Image Comparison Automation Test Case

We have taken one simple image application into consideration in order to
understand the image comparison feature of Appium. That application will display
the image from the given image URL.

225 www.kobiton.com



Now the main problem is that the DOM structure contains no details for the image
view, so we won’t be able to verify whether image view is visible or not after clicking
on submit. Moreover even if we verify that image view is visible it won’t give us
confidence that the displayed images are being fetched from given image URL. So in
order to check this use case, we need to use Appium’s image comparison
functionality.

| NON | Ul Automator Viewer
(ol
- 5 a %
‘ Image_App_AppiumBook NV
v
https://pisces.bbystatic.com/image2/BestBuy V¥ (0) FrameLayout [0,0][1080,1794]
_US_/images/products/6009/§009665_sd (0) TextView:Image_App_AppiumBook [
Jjpg;maxHeight=640;maxWidth=550| (1) ImageView {More options} [975,73]

(2) EditText:https://pisces.bbystatic.cor

(3) Button:SUBMIT [424,572][655,698

Node Detail
index 3
text SUBMIT
resource-id codepath.com.myfun:id/buttc
class android.widget.Button
package codepath.com.myfun
content-desc
checkable false
checked false
clickable true
enabled true
focusable true
focused false
scrollable false

Figure-6: ImageView is not available for the appeared image.

Here we will download the image from the given URL and will check that the
downloaded image is present on the application(after clicking the submit button).

Follow a 2 step process:
1) Download the image from the image URL.

2) Verify that the downloaded image is present on the app after entering the
image URL and clicking on the Submit button.

But before moving to the business logic part we need to integrate the latest version
of the Appium java-client(7.0.0) which supports the new image locator strategy.

build.gradle

226 www.kobiton.com



dependencies {

testCompile group: 'io.appium', name: 'java-client',
version: '7.0.0'

}

After defining the dependency we can proceed.

1) Download the image from the image URL and convert it to Base64-encoded
version:

In the image locator strategy we are dealing with the base64-encoded format of
the image so downloading the image is not sufficient, we need to convert it to
base64-encoded format. Below method will convert any image from it’s URL to
base64-encoded format.

public String getBase64FormatOfImageFromURL(String imageURL)
throws IOException, URISyntaxException {

URL url = new URL(imageURL);
try {
InputStream is = url.openStream();
byte[] bytes =
org.apache.commons.io.IOUtils.toByteArray(is);

return
org.apache.commons.codec.binary.Base64.encodeBase64String(byt
es);
} catch (Exception e) {

throw new RuntimeException("Please check the network
on your server! It seems disconnected.");

}

2) Verify downloaded image is present on the app (after entering the image
URL and clicking on the Submit button).

After getting the base64 format of the downloaded image, you need to check
that base64-encoded string of that image is present on the application (after
entering the image URL and clicking on the submit button on the app).

Please find the below code for reference:

public void isImageAppearOnApplication(String
base64FormatImage) throws IOException, URISyntaxException {

227 www.kobiton.com



waitUtils.staticWait(5000);
try {

Assert.assertTrue(AppiumUtils.isElementDisplayed((AndroidElem
ent) driver.findElementByImage(base64FormatImage)), "Expected
Image did not appear on dashboard Screen.");

} catch (NoSuchElementException e) {

throw new RuntimeException("Expected image didn't
display on Application!");

}

In the above code, notice how we have put a static wait of 5 seconds - this is
because as soon as the SUBMIT button is tapped, it will take some time to fetch
and display the image on the app from the image URL.

NOTE: Here we could have put the dynamic wait instead of static if Image view
was present in DOM for the displayed image.

Using Image Comparison to Locate an Element

A more common use case for Image comparison is to find an element that you can’t
find in any other way. We can use image comparison to find, for example, a button
by comparing the image of that button and then perform an action on it.

We're going to use a somewhat contrived sample application but it will help
demonstate the concept. In this sample application there are 3 icons (pretend that
they’re buttons!) and none of them have any id or unique locator assigned (You
could use the indexing but we want to focus on the image locator strategy). When
you click on the first image the textview will be visible saying “First Icon clicked!”.
Similarly when you click on the second or third image, the textview will visible
accordingly.

We want to click on the first button and want to assert that the “First Icon clicked!”
textview is visible. This will be 3 step process:

1) Get the image file of the button.
2) Get the element using the image.
3) Click on the element.

228 www.kobiton.com



[ XON )
=@ed
B8 0 ® © M 46% wa 4:30

MyApp23

/

Third Icon  Node Detail
N

Ul Automator Viewer

A a SR V4 x (269,602)

v
v (0) FrameLayout [0,0][1080,1920]
(0) TextView:MyApp23 [42,101][268,172]
(2) ImageButton [705,231](1059,725]
(3) ImageButton [330,935](750,1284]

true

\ Second Icon
No unique locator is present!
First Icon j

index 1

text

resource-id

class android.widget.ImageButton
package com.example.pratik.myapp23
content-desc

checkable false

checked false

clickable true

enabled true

focusable true

focused false

scrollable false

long-clickable false

password false

Figure-7:Android application having 3 buttons.

So let’s understand the each step:

1) Get the image file of the button
There are many ways you can get the image for the any of element.

1. Capture the screenshot of the application and crop the needed

element’s image.

2. Using Appium Inspector/uiautomatorviewer

Here we can use the 2nd approach since it is more convenient for our
example. We can inspect the elements along with the image screenshot in
the uiautomatorviewer tool and using snipping tool(windows)/image
capture(mac) we can simple capture the image of selected area easily. Going
with a capture is going to be inaccurate - your best bet is to get the source
image file from the developers or Ul/UX team.

229 www.kobiton.com




2) Get the element using the image

After getting the image we need to convert the image into Base64 encoded
format. In java below code will convert any image file(.jpg/.png) to Base64
encoded format.

public static String getBase64StringFormatOfImage(String
imgName) throws URISyntaxException, IOException {

URL refImgUrl = ImageUtils.class.getClassLoader().
getResource(imgName);

File refImgFile = Paths.get(refImgUrl.toURI()).toFile();

return Base64.getEncoder().
encodeToString(Files.readAllBytes(refImgFile.toPath()));

}

Here we will pass the image name as an argument in the method which we have
from step 1. And using this code we can get the element from image.

String base64FormatOfImageFromImage =
ImageUtils.getBase64StringFormatOfImage(imageName);

WebElement iconButton =
androidDriver.findElementByImage(base64FormatOfImageFromImage

)s

3) Click on the element

After getting an element you just need to click on the element. Using:
iconButton.click();

And on the last step we will make assertion that “First Icon clicked!” textview is
visible when click() action performs.

String expectedText = "First Icon clicked!";

String actualText =
androidDriver.findElement (By.id("com.example.pratik.myapp23:i
d/textView")).getText();

Assert.assertEquals(expectedText, actualText, "Actual and
Expected Text didn't match!");

230 www.kobiton.com



This feature opens the door to new possibilities because there were cases when the
traditional locator strategy could not help us. But now, by using the Image locator
strategy you can literally find any Ul element and apply an action upon it.

Image matching: Find occurrence of partial image in
the full image

Another important capability in the image comparison feature is to match the partial
image on the full image. Appium provides a method:

findImageOccurrence(byte[] fullImage, byte[] partiallmage,
@Nullable OccurrenceMatchingOptions options)

which serves this purpose.

We will use a simple example to demonstrate this. We will use an Android
application showing the full size of an image and we will verify that the partial image
of that full image is present.

These are the steps to assert that the partial image is present in the full image:

1) First of all we need to convert both partial and full images to the Base64
encoded byte format. Below method is responsible to convert any image to
it's Base64 encoded byte format.

/**

* This method is used to convert Image(.png file) to Base64
Byte format.

*

* @param imgName

* @return

* @throws URISyntaxException

* @throws IOException

*/

public static byte[] getBase64ByteFormatOfImage(String
imgName) throws URISyntaxException, IOException {

URL refImgUrl =
ImageUtils.class.getClassLoader().getResource(imgName);

File refImgFile = Paths.get(refImgUrl.toURI()).toFile();
return Files.readAllBytes(refImgFile.toPath());

231 www.kobiton.com



2) Now we need to call the findImageOccurrence() method with
appropriate parameters.

OccurrenceMatchingResult imageOccurrence =
androidDriver.findImageOccurrence(fullImage, partialImage,
new
OccurrenceMatchingOptions().withThreshold(©.1).withEnabledVis
ualization());

Here we need to pass 3 parameters:

1. Baseb64 encoded byte format of Full Image

Base64 encoded byte format of Partial Image

3. New OccurrenceMatchingOptions () with
withThreshold(0.1) & withEnabledVisualization()

N

withEnabledVisualization(): In order to enable the visualization so
that you can get the visualization length.

withThreshold(@.1): This is the threshold value for image matching. If
you don’t use this method and you have only small portion of the full image
to compare then you might face an error: “Cannot find any occurrences of
the partial image in the full image above the threshold of 0.5”. Here we have
used this method with a 0.1 value which means we have put a minimum
threshold of 0.1 so we won’t get the exception.

3) Add the assertion by checking that the length of visualization is greater than
0.

Assert.assertTrue(imageOccurrence.getVisualization().length >
@ , "Partial image is not present!");

VisualizationTest.java

@Test

public void testVisulization() throws IOException,
URISyntaxException {

byte[] fulllImage =
Base64.encodeBase64(ImageUtils.getBase64ByteFormatOfImage("ab
stractFullImage.jpg"));

232 www.kobiton.com



byte[] partialImage =
Base64.encodeBase64(ImageUtils.getBase64ByteFormatOfImage("ab
stractPartialImage.png"));

OccurrenceMatchingResult imageOccurrence =
androidDriver.findImageOccurrence(fullImage, partialImage,
new
OccurrenceMatchingOptions () .withThreshold(0.1) .withEnabledVis
ualization());

System.out.println(imageOccurrence.getRect().getDimension());

System.out.println("X:"+imageOccurrence.getRect().getX());

System.out.println("Y:"+imageOccurrence.getRect().getY());
System.out.println("Height:"+imageOccurrence.getRect().
getHeight());
System.out.println("Width:"+imageOccurrence.getRect().
getWidth());

System.out.println(imageOccurrence.getVisualization().length)

J

Assert.assertTrue(imageOccurrence.getVisualization().length >
@ , "Partial image is not present!");

}

In order to get more details on image comparison visit the official appium docs.
You can find the above complete examples on our GitHub page.

If you want to know more about the image locator strategy, please review this article
on Jonathan Lipps’ blog: https://appiumpro.com/editions/32

233 www.kobiton.com



Chapter-14: End-to-End Testing

We've covered a lot up until this point. If you’ve stuck with us, you should hopefully
feel far more knowledgeable about Appium. Don’t worry if you feel it hasn’t all quite
“come together” yet. Start small and write some simple test cases. You don’t need to
use the advanced concepts like our design patterns until you become more
comfortable with the basics of Appium.

This chapter aims to help you bring in all the moving pieces and combines everything
you’ve learned up to now by showing you how to apply all your knowledge in an
“end-to-end” test. At times we’ll reference previous sections, and we’ll also rehash
some information we’ve previously covered. Seeing coverage from another angle
will help solidify your knowledge.

This chapter is divided into 4 sections:

1) Setting up Appium.

2) Test Planning.

3) Test Setup.

4) Test Case Writing and Execution.

1) Setting up Appium

This is a section we won’t repeat here as it was covered extensively in the
first chapter. Setting up environments isn’t ever any fun but once it’s setup
you’re good to go. We’'re going to assume you have everything setup - and
refer to the first chapter if you need some help.

2) Test Planning

As the expression goes - “Measure twice, cut once”. Some planning up-front
is going to save you a lot of headache later on. And good test planning means
a little experimentation with manual testing before starting automation.
Specifically:

1) The first thing is you need to check application compatibility or
suitability for automation testing. You can check that by verifying the
values of selectors using the locator inspection tool (Appium
accessibility inspector or UiAutomator). You can quickly assess the
locators of basic Ul elements such as username field, password field,
login button etc. and if you don’t find unique locators for them you’re
going to need to use Xpath which is less than ideal. If at all possible,

234 www.kobiton.com



work with the development team to see if they can assign unique

locators to Ul elements.

2) After verifying the availability of unique locators, you need to explore
the whole application thoroughly, you need to understand each and
every feature of the app and need to prepare the list of the most
important ones. After preparing the list you can prepare manual test
cases. With automation and parallel execution, keep in mind that your
test could be executed in a random order at any point of time so it

should be very granular, and it is important that the test cases you
design are modular and independent.

3) Test Environment Setup

In order to perform automation using Appium you need to:
1) Write the code which will find the Ul element on the screen.

2) After getting the element, write the code which will perform an action
upon it.

This is all done within your test code - the Appium server will interact with

the application artifacts(.ipa or .apk) and your test code:

APPLICATION

.ipa

.apk

Y

APPIUM
SERVER

Test Runner

Tests

=
sz
=2222%

)/

Connected Real
Device / Simulator /
Emulator

235

Figure-1: Appium Process.

So you can create a native mobile application on XCode(for iOS) and Android
Studio(for Android) OR you can also use the build (.ipa/.apk) directly, write
the Ul test cases in your preferred programming language and executes them

manually from the IntelliJ IDEA, Eclipse IDE, Visual Studio or IntelliJ

PHPStorm.

www.kobiton.com




Moreover, if you want to achieve end-to-end automation and want Ul test
cases as the part of your CI/CD process then you can also integrate them with
tools such as Jenkins and BitBucket.

So first thing first is you need to get the build(.ipa/.apk), choose the
programming language for your automation code and get the physical
device/Simulator/Emulator for testing.

4) Test Case Writing

After designing the test cases and setting up the test environment you can
start writing the test cases. For illustrative purposes, we will be automating
the Android messaging app from Google. To reemphasize best practices, we
will utilize the page object model to create a cleaner and more modular
solution. Because we already discussed the page object model framework in
detail previously, we can save time by cloning the automation framework
project we used previously which you can find on github here.

Now let’s discuss the scenario which we want to automate. We have selected
the Google message application(v 3.9.039) for automation.

But before starting the automation we will need to plan our test. So as

per our above discussion, we need to take care of 2 things.

236

1) We need to quickly check the app feasibility for automation and to do
so we need to verify that the locators of the app are unique. Here we
will use uiautomatorviewer to find the unique locators of Ul elements
as it is quick on Android compared to the Appium inspection tool.

www.kobiton.com



00 Ul Automator Viewer

@ed
9 A N N x (1036,1706)
o © % 13% 8 1034 \£) IEALVIEW.OUII [0S,/ / JJ| 1USO,0 17/
¥ (3) LinearLayout [0,17005][1080,1263]
Messages Q¢ (0) TextView:IMJadBlu [189,1037][362,1094]
(1) TextView:Reserved for you. Handpicked for you. JadeBlue EOSS. BUY 1 GET 1 FREE. Upto 40% OFF «
(2) TextView:Sun [983,1037][1038,1075]
» (4) LinearLayout [0,1263][1080,1435]
¥ (5) LinearLayout [0,1435][1080,1693]
(0) TextView:IGMHACIS [189,1467][390,1524]
(1) TextView:Online posting and circulation of Child Pornography or Rape/Gang Rape content is a punish:
(2) TextView:Sat [992,1467][1038,1505]
> (6) LinearLayout [0,1693][1080,1920]
(1) ViewGroup {Messages} [426,105][654,168]
(2) TextView {Search messages} [848,73][975,199]
(3) ImageView {More options} [975,73][1080,199]
(4) Button:Start chat {Start chat} [661,1710][1017,1857]
Node Detail
Once you start a new conversation, you'll index 4
see it listed here text Start chat
resource-id com.google.android.apps.messaging:id/start_new_conversation_button
class android.widget.Button
package com.google.android.apps.messaging
content-desc Start chat
checkable false
checked false
clickable true
enabled true
focusable true
r ~ focused false
scrollable false
A 4 long-clickable false
password false
selected false
bounds [661,1710][1017,1857]

Figure-2: Quick check of locators on messaging app.

As you can see above, the button has a unique resource-id - The
Google developers have assigned unique ids to all Ul elements, so the first
step is clear.

2) The Google message app is straightforward - you can explore the
whole application and can get an idea of each feature. As the
application is mainly designed to send an SMS to contacts we will
need to automate the most important scenario which is sending the
SMS to a particular contact.

Here are the manual steps we will perform and then use this to create the

automation:
No. | Test Steps Expected Output
1 Open the google message application. | An app should open.
2 Tap on ‘Start chat’ OR '+ button. New conversion screen should
appear.

237 www.kobiton.com



Type the contact no. in ‘To’ textfield.

‘Send to contact no.’ row should be
visible.

Tap on the suggested contact below
search box.(like ‘Send to 111-1111")

Conversation screen should appear.

Type into the message textfield.

A message should be typed
correctly.

Tap on ‘SMS’ button

Message should be sent to the
recipient.

Now, both the conditions are satisfied so we can move forward and start

writing the automation test case. We will use the page object model framework for

writing the automation test case and using it involves just a few steps - it may seem

like overkill for this test case but we’re putting in a good baseline for a larger more
sophisticated automation project:

1)

238

You can get the POM-based automation framework from our GitHub

page.

Import as gradle project in IntelliJ IDEA/Eclipse IDE.

Run the build.gradle file in order to download all dependencies.

Move to the configuration.properties file and change these

properties as per the connected Android device.
android.platform.version=<get android version of

device>

android.device.name=<get device name using $ adb

devices>

Set the proper desired capabilities.

Get the unique locators for Ul elements on the app.

Create the page objects of different screens.

Write the automation test case using the created page object’s

methods.

www.kobiton.com




The First 4 steps are straight forward - now we get to the desired capabilities
part!

Set desired capabilities
Because the app we have chosen comes pre-installed on Android devices, we
can skip the installation and go straight to opening the app.

DesiredCapabilities desiredCapabilities = new
DesiredCapabilities();
desiredCapabilities.setCapability(MobileCapabilityType.AUTOMA
TION_NAME, "uiautomator2");
desiredCapabilities.setCapability(MobileCapabilityType.DEVICE
_NAME, "c4e3f3cd");
desiredCapabilities.setCapability(MobileCapabilityType.PLATFO
RM_NAME, "Android");
desiredCapabilities.setCapability(MobileCapabilityType.PLATFO
RM_VERSION, "8.0");
desiredCapabilities.setCapability(AndroidMobileCapabilityType
.APP_PACKAGE, "com.google.android.apps.messaging");
desiredCapabilities.setCapability(AndroidMobileCapabilityType
.APP_ACTIVITY,
"com.google.android.apps.messaging.ui.ConversationlListActivit
y")s
desiredCapabilities.setCapability(MobileCapabilityType.FULL_R
ESET, false);
desiredCapabilities.setCapability(MobileCapabilityType.NO_RES
ET, true);
desiredCapabilities.setCapability(AndroidMobileCapabilityType
.AUTO_GRANT_PERMISSIONS, true);

Here, we don’t use the
desiredCapabilities.setCapability(MobileCapabilityType.AP
P, <path-to-app>); capability because we are not installing the application.

Getting the unique locators
After setting the desired capabilities you need to extract the selectors using
uiautomatorviewer(or Appium inspector) for all the Ul elements we need to control.

NOTE: The Google message application will change periodically so there are
chances that the element IDs may change over time, so please modify the

automation script accordingly.

There are 4 screens we need to take care of for automating our scenario:

239 www.kobiton.com



1) Messages (Dashboard) screen.

2) New conversation screen.

3) New conversation screen for a new contact.
4) Conversation screen.

o] © % 13% % 10:34 o © ¥4 100%H8 7:31
Messages Qi & New conversation
To Type a name, phone number, or email EEE

Ao+ Start group conversation

Once you start a new conversation, you'll
see it listed here

r ~
A. 4

Figure-3.1: Google message app: Message & New conversation screens.

240 www.kobiton.com



= Q OWwd100%B740) 8 O © ¥ 100% 0 7:33
& New conversation & W Q
To 4325234 # ol o 4325235 o

< Sendto 4325235

G X
123 456 7 890
y u i op
asdf gh j kI

qwer r t

7:33PM

Conversation with 4325235

° [Text message

Figure-3.2: Google message app: New conversation & Conversation screens.

& z X ¢cvbnm@E

English

7123 @ ©

After identifying the screens, we need to get the selectors of each element from all
screens which will be needed while automating our test case.

So let’s make a list:

Screen Name Element Locator

ID: start_new_conversation_button

Or

ID:
com.google.android.apps.messaging:id/start_new_
conversation_button

Messages ‘Start chat’ button

New
conversation

‘To’ textfield

ID: recipient_text_view

New
conversation

‘Send to 432-
5235’ textview

tapping on ENTER from keyboard.

Not present on DOM, but we can skip this by

Conversation

SMS Message
textfield

ID: compose_message_text

241

www.kobiton.com




Conversation ‘SMS’ button ID: send_message_button_container

Conversation Sent Message XPath:
layout //android.support.v7.widget.RecyclerView/android.
widget.Framelayout

NOTE: You can use the ID selector in these formats:
1) start_new_conversation_button

2) com.google.android.apps.messaging:id/start_new_conversation_butt
on

If you look at the above table closely you can notice that most of elements
have unique Ids, however a few elements have some issues with their id:

1) ‘Send to 432-5235’ textview is not present in DOM at all so we can’t
locate that element.

[ JOX J Ul Automator Viewer
ce@d
+ A /N N x (829,350)
O == © ¥ 4 100%0 7:22 ¥ (0) FrameLayout [0,0][1080,1920]
X (0) TextView:To [0,210][189,336]
< New conversation (1) ScrollView [189,210][954,336]
. (0) MultiAutoCompleteTextView:4325235 [189,210][954,336]
To 4325235 B (2) ImageButton {Switch between entering text and numbers} [954,210][1080,336]
¥ (3) ListView [0,339][1080,1056]
; Send to 4325235 v(0) FrarfleLayout [0,339][1080,528]
¥ (0) LinearLayout [0,360][1080,528]
(0) TextView:Start group conversation [190,415][651,472]
¥ (1) LinearLayout [0,527][1080,1056]
(0) TextView:TOP CONTACTS [0,527][252,605]
¥ (1) GridView [0,605][1080,1056]
»> (0) LinearLayout [37,647][271,877]
> (1) LinearLayout [294,647][528,877]
> (2) LinearLayout [551,647][785,877]
Node Detail
index 0
G W text
resource-id
class android.widget.FrameLayout
1 2 3 4 5 6 7 8 9 0 package com.google.android.apps.messaging
g content-desc
q w er t y u | 0 p checkable false
checked false
a s d f g h J k | clickable true
enabled true
focusable false
4 z x c v b nm & focused false
scrollable false
72123 @ @) English . long-clickable false
password false
selected false
bounds [0,339][1080,528]

Figure-4: Selector of ‘Send to‘4325235’ textview is not present in DOM.

So, we need to look for a workaround. If you look closely at this
screen then you might figure out that you just have to press the ‘correct’
(green checkmark) icon on the keyboard and you don't need to press the
‘Send to 432-5235’ textview.

242 www.kobiton.com



B = Q © ¥ 4 100% 8 7:40

< New conversation

To 4325235

& Sendto 4325235

G X

123 456 78 90

qgwer T tyuiop
asdf gh j k I

& z x ¢cvbnm®@®

7123 @ © English

Figure-5: Use Right Icon instead of ‘Send to 4325235’ textview.

We can click on the icon from the soft keyboard:
driver.pressKey(new KeyEvent().withKey(AndroidKey.ENTER));

2) The 2nd issue is there is no unique id assigned to the sent message
textview. So we need to look at another locator strategy. What about
using the accessibility id locator strategy? Unfortunately that would
only work if the id is static and here it keeps changing, so that strategy
won’t work either.

So the XPath locator strategy remains. It’s actually good practice to
use the text attribute in XPath but if you see the below screenshot you can
find that there is no text assigned to the sent message textview. So we will
need to use XPath as follows:

@AndroidFindBy(xpath =

"//android. support.v7.widget.RecyclerView/android.widget.Fram
eLayout™)

List<AndroidElement> sentMessagelayout;

This game of finding the right locator strategy to use is very common

243 www.kobiton.com



in test automation. You’ll explore the elements and then go through a
process of trying to find what the best locator strategy is in order to reach
those elements.

You may be wondering why we have taken the List of
AndroidElement ? This is because the problem with the single
AndroidElement is if you have multiple messages sent to the same mobile
number it will always take the first element but we need the last element of
the sent message. Please see Figure-7: Framelayout presents for each sent
message.

[ JOX ) Ul Automator Viewer

=@@4
+ A N NV x (1043,1676)

g0 © o 4d100%065 | v
¥ (0) FrameLayout [0,0][1080,1920]
< 4325235 woQa : ¥ (0) android.support.v7.widget.RecyclerView [0,63][1080,1920]
¥ (0) LinearLayout [0,1302][1080,1549]
(0) TextView:Conversation with 4325235 {Conversation with Four Three Two Five Two Three Five , Now!
(1) FrameLayout {You said, Test, Not sent. Tap to try again.} [0,1549][1080,1739]

» (1) FrameLayout [11,1773][137,1899]

> (2) FrameLayout [137,1773][263,1899]
(3) EditText:Text message [313,1771][931,1897]
(4) LinearLayout {Send SMS} [931,1771][1057,1897]
(5) ImageButton {Navigate up} [0,63][147,210]

¥ (6) LinearLayout [189,63][721,210]
(7) TextView {Make a call} [721,73][848,199]
(8) TextView {Search} [848,73][975,199]

1OV lenam AV Eiauss (M Aara Ant fan~l FATE 751T1A0A 1001
Node Detail
index 1
text
resource-id
class android.widget.FrameLayout
package com.google.android.apps.messaging
content-desc You said, Test, Not sent. Tap to try again.
6:52PM checkable false
checked false
Conversation with 4325235 clickable true
enabled true
Test focusable true
Not sent. Tap to try again. focused false
scrollable false
° @ Text message long-clickable true
password false
selected false
bounds [0,1549][1080,1739]

Figure-6: Id is not assigned to sent message textview.

244 www.kobiton.com



00 Ul Automator Viewer

=@@ed
& A a4 x (1070,1023)
1O0E © @ d 100% @ 8:04 ¥ (0) FrameLayout [0,0][1080,1920]
¥ (0) android.support.v7.widget.RecyclerView [0,63][1080,1920
& 4325235 L oQa © Pe 9 y foe3i !

¥ (0) LinearLayout [0,690][1080,937]
0) TextView: - o

X n:Con 3 h onversation w 0 hree Two Five Tw

(1) FrameLayout {You said, Test, Not sent. Tap to try again.} [0,937][1080,1127]

(2) FrameLayout {You said, Test123, Not sent. Tap to try again.} [0,1127][1080,1280]

(3) FrameLayout {You said, Test12345, Not sent. Tap to try again.} [0,1280][1080,1433]

(4) FrameLayout {You said, Test123456, Not sent. Tap to try again.} [0,1433][1080,1586]

» (5) FrameLayout {Your message, Not sent. Tap to try again.} [0,15861[1080,1739]
rameLayou T T1899]

> (2) FrameLayout [137,1773][263,1899]

(3) EditText:Text message [313,1771][931,1897]

(4) LinearLayout {Send SMS} [931,1771][1057,1897]

(5) ImageButton {Navigate up} [0,63][147,210]

WL\ 1 innarl Aviad T100 2911704 2ANT

8:03 PM

Conversation with 4325235

Node Detail
Test index 5
Notsent, Tap to trv again, text
Test123 resource-id o
class android.widget.FrameLayout
Not sent. Tap to try again. . .
package com.google.android.apps.messaging
Test12345 content-desc Your message, Not sent. Tap to try again.
NotsenLoptotyagan f | checkable false
Test123456 crllecked false
) clickable true
Not sent. Tap to try again, enabled true
Test1234567 focusable true
Not sent, Tap to trv again, focused false
scrollable false

° @ Text message i long-clickable true
§ password false

Figure-7: FramelLayout presents for each sent message.

Now that we have all the unique locators which we wanted, we can start
creating our actions in the PO classes.

Create action methods in PO classes

We need to create action methods on Page Object classes which will tap on
buttons, fill the text fields and assert text values on the app screen.

For example, on the Message(Dashboard) screen we need a method which
will tap on the ‘Start chat’ button. We already have the selector of the ‘Start
button’ so we can create our method:

public class MessagesPO extends BasePO {
public MessagesPO(AppiumDriver driver) {
super(driver);

}

@AndroidFindBy(id =
"com.google.android.apps.messaging:id/start_new_conversation_
button")

AndroidElement startChatButton;

public NewConversationPO tapOnStartChatButton() {

startChatButton.click();
return new NewConversationPO(driver);

245 www.kobiton.com



Why does our tapOnStartChatButton() method return a new object of
NewConversationPO? The answer is that whenever any method is
responsible to change the screen we can return the object of the subsequent
screen’s PO class so that we don’t need to create the object of that PO class
separately while writing test case.

Here, the method tapOnStartChatButton() will tap on ‘Start chat’
button which will navigate to the New Conversation screen so we are
returning the object of NewConversationPO class.

This practice is not mandatory but it is good to have.

NOTE: All PO class should extend the BasePO class as it contains the logic
which initializes the page factory and other utility classes. You can look into
the chapter titled: “Developing Test Automation Framework for Appium using
Page Object Modeling(POM)“ for more details.

We have created the below table which gives the mapping between screen
names and corresponding method names.

Screen Name Method Name

Messages tapOnStartChatButton(): It will tap on Start chat button.

New conversation

contact no. and submit it for conversation.

Conversation

textfield.
tapOnSMSButton(): This method will tap on the SMS button.

purpose, it will return true if conversation screen appears.
message.

message text.

isMessageSent():It will verify that message is sent or not.

isLastSentMessageContains(String subString): This method will

not.

246

Create the test case and use action methods from PO classes
This is the final and easiest, yet most powerful, step of automation test case

www.kobiton.com

typeAndSubmitContactNumber(String contactNo): It will type the

typelnSMSTextField(String text): This method will type into message

isConversationScreenDisplayed(): This method is used to verification
getLastSentMessage(): It will return the AndroidElement for last sent

getLastSentMessageText(): This method is used to get the last sent

check whether last sent message contains the passed subString or




writing. Here you have to organize all the methods from your PO classes in
order to make the complete automation test case and validate the result
using assertions.

Assertions are fundamental in test case writing - without them you’re just
doing automation, and not automated testing. Ideally, you would put as
many assertions as you can. Assertions can be thought of as checkpoints. At
the end of any action method you will have some expected results, and to
measure those expected results you have to put assertion statements in the
code.

In our example we are using the TestNG assertions.

Assertions simply compares the value of expected and actual values. If the
expected and actual values are equal then the assertion ‘passes’ and we
continue with code execution. If it fails (the actual result does not match the
expected result) the user defined message is thrown.

In our example we have 2 assertions:
1) Verify that the message has been sent to the user:

Here we want to check that the application has sent the message and
is being displayed on the conversation screen.

Assert.assertTrue(conversationPO.isMessageSent(), "Message:"'"

+ messageText +

247

is not being sent!");

The 2nd parameter is the error message we want to throw in case of
failure of the assertion. A good error message should give sufficient
information about what it is checking, so that your diagnostics
becomes easier.

2) Verify that sent message is as per expectations:
Checking that the message is sent is one thing ... but was the right
message sent? As discussed earlier there is no unique id assigned to
the sent message text view, so we can not get the text of the last
message. We can however get the whole Framelayout text.

So logically we can have an assertion which will check that the
expected text is present on the last sent message or not. In our
example, we have put the timestamp in milliseconds in a text
message and we will verify that given timestamp text value is present
on last sent message or not.

www.kobiton.com



Assert.assertTrue(conversationPO.isLastSentMessageContains
(timestamp), "Last sent message is different than expected!,
Original message is: '" +
conversationPO.getlLastSentMessageText() + "', while the

expected substring is: " + timestamp + "'");

After organizing the action methods from the PO and adding our
assertions we have our complete test case which will send the
message to a particular contact number.

public class TestCases extends BaseTest {

@Test
public void verifyUserCanSendMessage() {
final String phoneNo = "00011122233";
final String timestamp = System.currentTimeMillis() +

wn o,
I

final String messageText = "Hello, there. Current
time is: " + timestamp;
MessagesPO messagesPO = new
MessagesPO(androidDriver);

NewConversationPO newConversationPO =
messagesPO.tapOnStartChatButton();

ConversationPO conversationPO =
newConversationPO.typeAndSubmitContactNumber (phoneNo);

Assert.assertTrue(conversationPO.
isConversationScreenDisplayed(), "Conversation screen didn't
appear!");

conversationPO.typeInSMSTextField(messageText);

conversationPO.tapOnSMSButton();

Assert.assertTrue(conversationP0O.isMessageSent(),
"Message:'" + messageText + "' is not being sent!");
Assert.assertTrue(conversationPO.isLastSentMessageContains
(timestamp), "Last sent message is different than expected!,
Original message is: '" +
conversationPO.getlLastSentMessageText() + "', while the
expected substring is: " + timestamp + "'");

}

@BeforeTest
@Override
public void setUpPage() throws MalformedURLException {

248 www.kobiton.com



androidDriver = new AndroidDriver(new
URL (APPIUM_SERVER_URL), getDesiredCapabilitiesForAndroid());
}

The full code is available on github here.

As we said at the outset, this app may have changed by the time this guide was
published. A new Ul could render some of our test cases invalid. We have however
tried to lay out a methodical and disciplined approach to tackling any test
automation project. You should be to apply this approach for any mobile application.

249 www.kobiton.com



Chapter-15: Test Automation
Design Patterns You Should
Know

Design patterns are used extensively when programming and they generally offer a
reusable solution to a known occurring problem. In many respects, they introduce a
set of best practices into your code and usually result in more flexible and
maintainable code.

Strictly speaking, design patterns are optional. There are many ways to code a
solution. Your organization may enforce certain patterns precisely because of
maintainability. Although optional, knowledge of various design patterns and
knowing when to use them will improve your skills in test automation design. And
that’s what we’re going to do in this chapter.

We already looked into one the best test automation design patterns - the Page
Object Model - in the Developing a test automation framework using appium
chapter. But there are many other framework patterns out there used by
automation teams, and that’s what we will explore in this chapter. Be forewarned
though, this is quite a technical chapter. A suggested approach may be to skim
through the content and then revisit it a second time in more detail.

1) Page Object Model(Pattern)

The Page Object Model is a widely used object design pattern for structuring
automation test code. Here, pages in the app are represented as Classes, and
various Ul elements of that pages are defined as variables. We already have gone
through this technique in detail previously, so here we will discuss the abstract
structure and explore how it can be implemented in a slightly different way or in
a different programming language.

250 www.kobiton.com



Utility Class

Test Cases ' PropertyUtils
! WebDriver ! 1

Figure-1: Page Object Pattern.

We use the Page Factory class to initialize the mobile(web for web application)
elements that are defined in Page Object(PO) classes.

PO classes containing the mobile elements needs to be initialized using the Page
Factory before it can be used, and this can be achieved by simply calling the
initElements function of PageFactory. In that method you need to initialize the
AppiumFieldDecorator class by passing the Appium Driver and Implicit wait
duration objects.

PageFactory.initElements(new AppiumFieldDecorator(driver,
Duration.ofSeconds(IMPLICIT WAIT)), this);

Or you can put the code in the constructor of the BasePO class.

Page Factory will initialize every MobileElement(AndroidElement or IOSElement)
variable with a reference to a relevant element on the actual mobile screen and
this is achieved by using @FindBy annotations. This annotation allows us to not
only retrieve the mobile element, but also information such as the locator
identifying strategy name and the locator value for retrieving it:

@iOSFindBy(accessibility = "Toolbar Done Button")
IOSElement doneButtonOnKeyboard;

Whenever the above code is used, the driver object will find it on the current
mobile screen and simulate the action.

With this pattern, you will need to design a Page Object class according to the
particular screen you wish to automate. For example, for the Login screen you

251 www.kobiton.com



can create a LoginPO class and can put all the Ul element locators as variables
iin the LoginPO class. And don’t forget that every PO class will extend the
BasePO class where we are calling the PageFactory initElements method in the
constructor.

In the Page Object Pattern all the locators will be reside in the relevant Page
Object Classes such as LoginP0O, RegisterP0, DashboardPO etc.. and the
method from that PO classes gets used by the Test Classes - and this is the main
advantage to using the Page Object pattern as locators and tests are residing in
different places. So whenever any Ul locator is changed you just need to apply
changes on the particular Page Object classes to fix the automation script. This is
the primary reason why the Page Object pattern is so widely used in automation
projects.

2) Factory Design Pattern

In the factory design pattern we have a super class with multiple subclasses and
based on some input, we need to return a particular subclass. It is often used
when a class cannot anticipate the type of objects it needs to create beforehand.
Here, instantiation of a class is done from the factory class. So when we need to
create the object based on particular input this pattern is used. So how does it
relate to automation test design?

This design pattern is best suited to when you are working with Android and iOS
and both having the same accessibility id on iOS and content-desc in Android. So
here the Factory class will create the relevant driver object (either Android or
i0S) and always returns a newly created object or re-initialized one, so you don’t
have to check the platform every time.

Example:

We have implemented a factory class that creates a Driver object based on a
specific input(platform name). This factory is very simple but it is perfect fit for
our purpose.

You can design the factory class and it’s methods for more complex applications.

252 www.kobiton.com



public class DriverFactory {

public AppiumDriver getDriver(String platformType) throws MalformedURLException {
if (platformType == "Android") {

DesiredCapabilities

desiredCapabilities.
desiredCapabilities.
desiredCapabilities.
desiredCapabilities.
desiredCapabilities.
desiredCapabilities.
desiredCapabilities.

desiredCapabilities = new DesiredCapabilities();

setCapability(MobileCapabilityType.AUTOMATION_NAME, AutomationName.IOS_XCUI_TEST)
setCapability(MobileCapabilityType.DEVICE_NAME, value: "John's iPhone");
setCapability(MobileCapabilityType.PLATFORM_NAME, value: “i0S");
setCapability(MobileCapabilityType.PLATFORM_VERSION, value: “12.2");
setCapability(MobileCapabilityType.APP, value: "/Users/abc/projectA/src/test/resources/sampleApp.ipa”);
setCapability(MobileCapabilityType.FULL_RESET, value: false);
setCapability(MobileCapabilityType.NO_RESET, value: true);

return new AndroidDriver(new URL( spec: “http://127.0.0.1:4723/wd/hub"), desiredCapabilities);

DesiredCapabilities

desiredCapabilities.
desiredCapabilities.
desiredCapabilities.
desiredCapabilities.
desiredCapabilities.
desiredCapabilities.
desiredCapabilities.

} else if (platformType == "i0S") {

desiredCapabilities = new DesiredCapabilities();

setCapability(MobileCapabilityType.AUTOMATION_NAME, AutomationName.IOS_XCUI_TEST)
setCapability(MobileCapabilityType.DEVICE_NAME, value: “John's iPhone");
setCapability(MobileCapabilityType.PLATFORM_NAME, value: “i0S");
setCapability(MobileCapabilityType.PLATFORM_VERSION, value: “12.2");
setCapability(MobileCapabilityType.APP, value: "/Users/abc/projectA/src/test/resources/sampleApp.ipa”);
setCapability(MobileCapabilityType.FULL_RESET, value: false);
setCapability(MobileCapabilityType.NO_RESET, value: true);

return new I0SDriver(new URL( spec: "http://127.0.0.1:4723/wd/hub"), desiredCapabilities)

} else

return null;

Figure-2: DriverFactory Class.

As you can see above, we have created one method getDriver(String
platfromType) onthe DriverFactory class. So according to the platform
type this method will return the particular AppiumDriver. This factory is used to
instantiate AppiumDriver in tests based on the external parameter.

AndroidDriver driver = new
DriverFactory().getDriver("Android");

driver.findElement(By.id("username")).sendKeys("john");
driver.findElement(By.id("password")).sendKeys("abcl123");
driver.findElement(By.id("login")).click();

MobileElement profileIcon =

(MobileElement)

driver.findElement(By.id("profileIcon"));

Assert.assertTrue(profileIcon.isDisplayed(), "Login was not
successful.");

3) Facade Pattern

The Facade pattern provides a simple interface to deal with complex code.

In the facade pattern, as applied to test automation, we design the facade class

which has methods that combine actions executed on different pages.

It is best to understand by looking at a practical example:

253 www.kobiton.com



P00 V1800 V1500
My Application My Application My Application

Username Username
Dashboard Screen

Password Password

Loan / ~

Logout

Figure-3: Sample Login Application.

Here we are going to automate a simple workflow using the facade pattern, like
first login to the application and move to the dashboard page, and from there
logout.

The Facade pattern is just an extension of the Page Object pattern, so basically in
order to automate the above scenario we need to create page objects for
different screens, so here we need to create 2 PO classes:

1) LoginPO
2) DashboardPO

Now we need to create one additional class, LoginFacade, which contains the
objects of PO classes and it also contains the business logic using those objects.
So the advantage of facade is you don’t have to deal with the PO classes
individually in your test script, you just need to use the facade class.

254 www.kobiton.com



LoginPO

LoginFacade - username
- password
- loginPO ‘
- dashboardPO + login(username, password)

+ loginAndLogout()

DashboardPO

+ logout()

Figure-4: Facade Pattern.

LoginPO - It contains the method of login to the application.

DashboardPO - It containsa logout() method.

LoginFacade - It has LoginPO and DashboardPO objects defined and method
loginAndLogout () also added, so you don’t have to call all PO methods, you
just have to deal with Facade class methods which are internally calling PO
methods. This type of automation framework is really useful when you are
dealing with complex app and you have many POs defined.

LoginFacade.java

public class LoginFacade {

private AppiumDriver driver;
private LoginPO loginPO;
private DashboardPO dashboardPO;

public LoginPO getLoginPO() {
if (loginPO == null) {
loginPO = new LoginPO(driver);
return loginPO;
} else
return loginPO;

255 www.kobiton.com



public DashboardPO getDashboardPO() {
if (dashboardPO == null) {
dashboardPO = new DashboardPO(driver);
return dashboardPO;
} else
return dashboardPO;

public void loginAndLogout(String username, String
password) {
getLoginPO().setUsernameTextField(username);
getLoginPO().setPasswordTextField(password);
getLoginPO().tapOnLoginButton();
getDashboardPO().tapOnLogoutTextView();

So as you can see in above example you only have to use the
loginAndLogout() method in order to do login and logout without
depending on other PO classes.

Now in case any workflow changes in your test cases you just need to change it
in one place, and if you want to add some additional business logic, you can
directly add them to the facade class.

For large and complex applications, If you don't use facade pattern then it’s
totally fine, but you may face some complexity in your automation framework
and your code may ultimately become unwieldy.

You can find the complete project on our github project.

4) Singleton Pattern

A Singleton class means only one instance of it can exist at any time.
But why would you need this?

Well it is very useful in a case when you need to use the same object across the
whole framework. A Singleton class returns the same instance every time you try

256 www.kobiton.com



to instantiate an instance of the class. Think of it providing global access to a
single object, for example, the log file object.

Creating a singleton class consists of:

1) Making the constructor of the Class private.

2) Make a static reference of the class, as we want to make this available
globally.

3) Make a static method which returns an object of type class and it should also
check whether class is already instantiated once or not - if it’s not
instantiated then it should instantiate that otherwise it can return reference
of the class directly.

Sample of SingletonClass:

public class SingletonClass {
public static SingletonClass singletonClass;

private SingletonClass() {

System.out.println("Singleton Class object
created.");

}

public static SingletonClass getSingletonClass() {
if (singletonClass == null) {
singletonClass = new SingletonClass();

}

return singletonClass;

public static void main(String[] args) {

SingletonClass scl =
SingletonClass.getSingletonClass();

SingletonClass sc2 =
SingletonClass.getSingletonClass();

}

Output:

Singleton Class object created.

257 www.kobiton.com



In above example we have created a Singleton class and we have defined two
objects which are instantiating the SingeltonClass two times but as you can see in
the output, the SingletonClass instantiates only once, after that it will re-use the
created instance.

Now let’s discuss how we can leverage this in Automation.

The Singleton pattern in automation can help us in many ways including:

1) We can ensure a single driver instance is used throughout our test cases.

2) Loading test data or other files just once rather than loading them
repeatedly.

So whenever you feel that particular objects should only be instantiated once,
you need to use the Singleton pattern. For example if a properties file in java is
loaded once you don’t want to load it again every time, consuming memory and
resources. Using the singleton pattern you can do just that.

In the following example we will create a Singleton class to create the
AppiumDriver(for iOS) only once.

SingletonAppiumDriver:

public class SingletonAppiumDriver {

public static SingletonAppiumDriver
singletonAppiumDriver;

private AppiumDriver appiumDriver;

public String appiumURL =
"http://127.0.0.1:4723/wd/hub";

private SingletonAppiumDriver() {

appiumDriver = new IOSDriver(new URL(appiumURL),
getDesiredCapabilitiesForIOS());

}

private DesiredCapabilities
getDesiredCapabilitiesForIOS() throws
MalformedURLException {

// set desired capabilities for 1i0S
return desiredCapabilities;

258 www.kobiton.com



public static SingletonAppiumDriver
getSingletonAppiumDriver() throws MalformedURLException {

if (singletonAppiumDriver == null)

singletonAppiumDriver = new
SingletonAppiumDriver();

return singletonAppiumDriver;

public AppiumDriver getAppiumDriver() {
return appiumDriver;

Using this Singleton class we can create test cases which will reuse the
appiumdriver object instead of creating a new one every time.

I0STestCase:

public class IOSTestCase {
@Test

public void sampleTestCasel() throws
MalformedURLException {

int a = 9;
int b = 1;

SingletonAppiumDriver singletonAppiumDriver =
SingletonAppiumDriver.getSingletonAppiumDriver();

AppiumDriver driver =
singletonAppiumDriver.getAppiumDriver();

driver.findElement(By.id("IntegerA")).sendKeys(a +
llll);

driver.findElement(By.id("IntegerB")).sendKeys(b +
llll);

driver.findElement(By.id("ComputeSumButton")).click();
String answer =
driver.findElement(By.id("Answer")).getText();

Assert.assertEquals(answer, a + b + ""
and Actual Result didn't match!");

, "Expected

259 www.kobiton.com



@Test

public void sampleTestCase2() throws
MalformedURLException {

int a = 1;
int b = 1;

SingletonAppiumDriver singletonAppiumDriver =
SingletonAppiumDriver.getSingletonAppiumDriver();

AppiumDriver driver =
singletonAppiumDriver.getAppiumDriver();

driver.findElement(By.id("IntegerA")).sendKeys(a +
n ll);

driver.findElement(By.id("IntegerB")).sendKeys(b +
n ll);

driver.findElement(By.id("ComputeSumButton")).click();

String answer =
driver.findElement(By.id("Answer")).getText();

Assert.assertEquals(answer, a + b + ""
and Actual Result didn't match!");

}

, "Expected

You can see the full project on our github project.

5) Fluent Page Object Model Pattern

As you already know, the Page Object model is the the best framework to use on
automation projects. However, it be simplified and made even more readable
using the Fluent Page Object Model.

In the fluent page object pattern every method which is responsible to perform
an action returns “this” in order to implement chaining methods for the business
logic of the test.

But please note that doesn’t mean we never return the other screen PO class.
Please refer to this example:.

LoginPO.java

260 www.kobiton.com



public class LoginPO extends BasePO {

public LoginPO setUsernameTextField(String username) {
usernameTextField.sendKeys(username);
return this;

public LoginPO setPasswordTextField(String password) {
passwordTextField.sendKeys(password);
return this;

public DashboardPO tapOnLoginButton() {
loginButton.click();
return new DashboardPO(driver);

TestCases.java

public class TestCases extends BaseTest {

@Test
public void testUserCanLoginAndLogout() {
String username = "pratik";

String password = "test123";

new LoginPO(driver);

LoginPO loginPO

loginPO.setUsernameTextField(username).
setPasswordTextField(password).
tapOnLoginButton().
tapOnLogoutTextView();

Assert.assertTrue(loginP0O.isLoginPageDisplayed(),
"Login Page did not appear after logout");

}

261 www.kobiton.com



In above example you can see that methods setUsernameTextField and
setPasswordTextField are returning “this” while method
tapOnLoginButton is returning the DashboardPO. So we are not forcing
every method to return “this” object of it’s own class since it is not a practical
approach.

One this is implemented, the chained method call is far more elegant:

loginP0O.setUsernameTextField(username).
setPasswordTextField(password).
tapOnLoginButton().
tapOnLogoutTextView();

You can find this example on our github page.

For those that are interested, there are many other design patterns. Most of these
are used extensively in software development, but arguably less so in test case
automation:

1) Observer Design Pattern

2) Observer Design Pattern via Events and Delegates
3) loC Container and Page Objects

4) Strategy Design Pattern

5) Advanced Strategy Design Pattern

You can learn more about these patterns on: https://dzone.com/articles/design-
patterns-in-automation-testing

As we said on the onset, using design patterns is optional from a purely technical
perspective and there are many ways to implement a solution. The more complex
your environment, the more likely you are to benefit from the rigor imposed by
design patterns. Also, many people new to test automation are intimidated at using
design patterns. Our recommendation is to get comfortable with appium and test
automation first, and then slowly expand your knowledge by incorporating design
patterns.

262 www.kobiton.com



Chapter 16 - Industry
Viewpoints

In this chapter we have the privilege of getting some thoughts on the state of QA
from industry leaders. It is a great way of concluding this book and leaving you
with different perspectives.

Our panel of experts include:

o Patrik Patel
o Paul Grizzaffi
® Mush Honda

Pratik Patel

Pratik is one of the primary authors of this book. He shares his thoughts on the
mobile application testing market:

The mobile application testing service market is gaining traction as
companies are recognizing the importance of automated testing as an
essential requirement to improve product quality in an increasingly time-
sensitive environment.

The rapid advancement of technology is having a significant impact in the
world of automated testing, and companies have more choices then ever
before. The strides made in machine learning, data science and artificial
intelligence are making their way into automation testing tools.

And it isn’t just technology advancement - QA and automation testing is
becoming a fundamental part of DevOps processes and Agile
methodologies. Companies are introducing automation earlier and more
frequently. Testing early and testing often has a much lower cost than
defects discovered later in the cycle.

Moving beyond automated tests, exciting areas in testing include proactive
defect prediction. Technologies such as machine learning, reinforcement
learning, neural networks, cognitive computing, robotics process

263 www.kobiton.com



automation and bot programming are giving rise to an exciting
advancement in testing. Technology can analyze source code, user
behavior, app structure etc and predict high-risk areas that should be
tested, and even predict where defects may be occuring.

Even Appium is benefiting from these technologies. We already see more
Al libraries helping with locators and classification.

Regardless of the technology used, the reality is that automation is a critical
part of a testing portfolio in order for companies to stay competitive.
Whether it is to improve quality or lower the time to market, automation is
the strategy to enable this. The modern tester should be very comfortable
with technology. Automation is the future, and test engineering will
become more prominent.

About Pratik: Pratik is an automation engineer with significant experience
working in the QA Automation Industry and has extensive Selenium and Appium
experience. He has worked on giant automation test frameworks(at Cybage
Software Pvt. Ltd., Gandhinagar) which was capable of executing 4500 Ul test
cases parallely - all built on Selenium, TestNG, Docker and Gradle. Recently he
has worked as an automation expert for a cloud based mobile automation
platform. Moreover he has experience working with Espresso, XCUITest, Katalon
Studio, RanoRex Studio, Appium Studio and cloud base automation platforms
such as Kobiton, Perfecto Mobile, Saucelabs, Browserstack and AWS Device
Farm.

Paul Grizzaffi

There are two points that I'd like to see the automation discipline embrace.
The first is to evaluate automation endeavors with business lenses. That is
to say, let's not automate just because we "are agile" or because we are
"doing Scrum". We should only automate when there is value. If there is no
value in automating for every work item, then don't automate for every
work item. If there is a higher value in creating scripts to generate data
than there is to create traditional smoke test scripts, then build the data
generation scripts first. | challenge the discipline to be more responsible in
how we spend our automation dollars.

Secondly, | challenge the tool vendors to focus more on reducing the effort
of automation maintenance as opposed to reducing the time it takes to

264

www.kobiton.com



create an automation script. While reducing the speed of automation
creation is certainly valuable, historically, | find that the cost of
maintenance eclipses the cost of creation. In my experience, tool vendors
focus on the speed and the ease of creation while largely ignoring the
challenge of maintenance. Fortunately, I'm seeing that change with some
vendors, but I'd like to see "lowering the cost of maintenance" on the sales
sheets for more vendors.

About Paul: As a Principal Automation Architect at Magenic, Paul Grizzaffi is
following his passion of providing technology solutions to testing and QA
organizations, including automation assessments, implementations, and through
activities benefiting the broader testing community. An accomplished keynote
speaker and writer, Paul has spoken at both local and national conferences and
meetings. He is an advisor to Software Test Professionals and STPCon, as well as
a member of the Industry Advisory Board of the Advanced Research Center for
Software Testing and Quality Assurance (STQA) at UT Dallas where heis a
frequent guest lecturer. Paul enjoys sharing his experiences and learning from
other testing professionals; his mostly cogent thoughts can be read on his blog at
https://responsibleautomation.wordpress.com/.

Mush Honda

Test Automation should be viewed as an enablement tool for testers; tools
such as appium help testers automate the mundane, repetitive checks that
must be performed. However, the automated checks done are only as good
as the tester who creates these tests; therefore, it is very important to
ensure that testers are continuously evolving and learning new methods of
testing, as well as performing a deep-dive into the domain of the
application under test.

It is very important that testers learn and apply automation tools as part of
their testing strategy, since the market demands are simple: Deliver faster,
with quality! With the rapid adoption of Continuous Delivery, it is very
important that testers apply automation tools to supplement the business
assurance testing that is being performed; again, testers should not simply
focus on being experts with tools only, they should also be learning to
becoming better testers (by learning domains, new testing concepts, etc).

265 www.kobiton.com



The testing industry is at a very exciting stage, where it has great support
from Al/ML based tools, as well as acknowledgement from the business
teams that have realized the important role that testers (and testing) play:
we help deliver software with HIGH CONFIDENCE, whether it is for an
enterprise’s digital transformation or a startup’s MVP into the consumer’s
hand!

About Mush: Mush is a leading expert in the testing industry known for his
practice leadership, solutions development and cross-industry expertise. During
his career tenure, he has worked with applications in insurance, healthcare,
speech analytics and financial services. Further, he has a proven track record of
creating, modifying, and innovating on test solutions and bringing them
successfully to market. Mush has been featured in several leading industry
publications as a thought leader on topics in the QA industry. Mush Honda is the
Vice President of Testing at KMS Technology, Inc. He is a driven IT leader with
over 15 years of experience in software testing and practice management

266 www.kobiton.com



Index

@

@AfterMethod - 142
@BeforeMethod - 142

A

Accessibility ID - 78

adbPort- 63

Android Studio - 15

Android UiAutomator - 87
Android View Tag - 88
androidCoverageEndIntent - 62
androidDeviceReadyTimeout - 62
androidDeviceSocket - 63
androidInstallPath - 63
androidInstallTimeout - 63
app-59

appActivity - 61

Appium Desktop Application - 89
Appium Inspector - 89, 90
appPackage - 61
appWaitActivity - 62
appWaitDuration - 62
appWaitPackage - 62

Attach to existing Session - 99
autoGrantPermission - 74
Automating Gestures - 196
automationName - 58
autoWebview - 60

avd - 63

avdArgs - 64
avdLaunchTimeout - 63
avdReadyTimeout - 64

B

browserName - 59

C

Class Name - 80
Conditional synchronization - 152

D

Desired Capabilities - 54
deviceName - 59
deviceReadyTimeout - 62
disableAndroidWatchers - 73

267

E

Element extraction - 91
emulators - 161
enablePerformanceLogging - 61
eventTimings - 60

Explicit wait - 152

F

Fluent wait - 152, 157
fullReset - 60

G

Gradle - 40

1

Image - 87

Image comparison - 221
Image Comparison - 87
Implicit wait - 152

Installation - 13

Intelli] IDEA - 32
10S UlAutomation - 88

K

keystorePassword - 64
keystorePath - 64
Kobiton - 175, 181

L

language - 60
LinkText - 107

locale - 60

Locator strategy - 77
Locators - 77

N

newCommandTimeout - 59
noReset - 60

www.kobiton.com



o

OpenCV - 222
orientation - 60

P

Page Object Modeling - 122
Parallel testing - 162

Partial LinkText - 107
platformName - 58
platformVersion - 58
printPageSourceOnFindFailure - 61

R

remoteAdbHost - 63
Reset strategies - 73

S

synchronization - 151

systemPort - 63

T

TestNG - 161

U

udid - 60

UiAutomatorViewer - 112
Unconditional synchronization - 151
useKeystore - 64

w

WDA - 172

X

XPath - 85, 106

---THE END---

268

www.kobiton.com



